Soluções Química - Semana 28

0 Flares Facebook 0 0 Flares ×

Iniciante

A solubilidade molar do iodato de tório(IV) pode ser escrita como

[Th^{4+}][IO_3^-]^4 = K_{ps} \Rightarrow S \cdot (4S)^4 =K_{ps}

\Rightarrow S = (\frac{K_{ps}}{256})^{\frac{1}{5}}

Intermediário

(1)Sn \rightarrow Sn^{2+} + 2e^- E^o = -E_1
(2)Sn^{4+} + 2e^- \rightarrow Sn^{2+} E^o = E_2

(1)+(2) \Rightarrow Sn + Sn^{4+} \rightleftharpoons 2Sn^{2+} E^o = E^o_3

\Rightarrow E^o_3 = E^o_2 - E^o_1

Avançado

a) As equações balanceadas são:

2 Cu^{2+} + 4 IO_3^- + 24 I^- + 24 H^+ \rightarrow 2 CuI + 13 I_2 + 12 H_2O (1)
I_2 + 2 S_2O_3^{2-} \rightarrow 2 I^- + S_4O_6^{2-} (2)

b) A partir de (2):

n(S_2O_3^{2-}) = c \cdot V = 0,100 mol \cdot dm^{-3} \cdot 0,03000 dm^3 = 3,00 \cdot 10^{-3} mol

De (2) e (1):

n(I_2) = 1,50 \cdot 10^{-3} mol

n(Cu^{2+}) = \frac {1,50 \cdot 10^{-3} mol}{13} \cdot 2 = 2,31 \cdot 10^{-4} mol

[Cu^{2+}] = \frac{2,31 \cdot 10^{-4} mol}{0,02000 dm^3} = 1,15 \cdot 10^{-2} mol \cdot dm^3

 

\Rightarrow [IO_3^-] = 2 [Cu^{2+}]

K_{ps} = [Cu^{2+}][IO_3^-]^2 = 4 \cdot [Cu^{2+}]^3 = 4 \cdot (1,15 \cdot 10^{-2})^3 = 6,08 \cdot 10^{-6}

0 Flares Facebook 0 0 Flares ×
0 Flares Facebook 0 0 Flares ×
%d bloggers like this: