Soluções Astronomia - Semana 06

Iniciante

Pela segunda Lei de Kepler, a área percorrida dividida pelo tempo que se leva para percorrer ela é constante para qualquer área numa órbita elíptica.

 \frac{\pi a b}{T} = \frac{\pi a b + bc}{t}
 \frac{t}{T} = \frac{1}{2} + \frac{e}{\pi}
 \frac{t}{T} = 0,75 .

Intermediário

Usando as equações de poder de resolução e onda eletromagnética:

 c = \lambda \cdot \nu \rightarrow \lambda = 5,5 \cdot 10^{-7}
 \frac{1,22 \cdot \lambda}{D} = \frac{d_{max}}{d_{Terra-Lua}}
 d_{max} = 51,6 km

Logo, a cratera pode ser resolvida.

Avançado

Nessa escala de magnitudes, temos:

 \Delta m = 4; 4^{4} = 256

Portanto, introduzindo um x para identificar a nova escala:

 \frac{B_{2}}{B_{1}} = 10^{\frac{4}{x}}
 x = 1,661

Logo, para duas estrelas com magnitudes n e m:

 \frac{B_{m}}{B_{n}} = 10^{\frac{(n-m)}{1,661}}

E a relação entre as magnitudes aparente e absoluta:

 m - M = 1,661 log (\frac{d^{2}}{100})
 m - M = 3,322 log d - 3,322 .