Iniciante
Partindo da definição de parsec:
Podemos substituir d para 1 e p para 1 segundo de arco. No entanto, como , vem que:
Intermediário
Com base na figura, e conhecendo as distâncias Terra-Sol e Marte-Sol, podemos resolver os itens da questão.
a) Conservando o momento angular da partícula:
Da conservação de energia:
b) Substituindo na relação encontrada no item (a) a partir da conservação do momento angular:
c) O tempo de trânsito, pela figura acima, será metade do período de órbita. Da terceira lei de Kepler, podemos concluir, que, em anos, o tempo de trânsito será:
d) Inicialmente o satélite está em órbita geoestacionária, depois ele recebe um acréscimo de velocidade , para que ele fique com . Com isso:
e) Temos para o afélio , daí:
Avançado
a) A contagem da função dada começa em , sendo assim, substituindo na equação:
Ou seja, para esta declinação, temos solstício de verão no hemisfério Norte. Sendo assim, assumindo que esta contagem vale para 2018, ela começa em 21 de Junho de 2018.
b) Para que haja equinócio, precisamos de , sendo assim:
ou
c) Desenhando para o observador localizado em Aachen, temos a seguinte configuração:
O fluxo máximo que o captador consegue receber pode ser equacionado, seguindo a dica do item c, da seguinte forma:
Com isso, da construção da figura acima, e lembrando que o eixo polar é perpendicular ao equador, temos a relação:
Para valores maiores que 15º de declinação, o captador deverá ser desligado, sendo assim substituindo o valor encontrado na equação dada:
ou
Com isso, podemos concluir que para e , teremos que desligar o receptor.
d) Para já se passaram dias de 2018, sendo assim, podemos montar uma equação do número de dias que já se passaram de 2018, em função de d. Com isso:
Substituindo os valores encontrados no item passado, vemos que o captador ficará desligado de 16 de Agosto de 2018 até 5 de Maio de 2019.