Soluções Física - Semana 51

Iniciante:

Situação Física: Devemos lembrar das dependências do período da cada sistema. Para o "massa-mola", a dependência se da somente em relação a constante elástica da mesma e a massa, sendo que a gravidade somente afetaria no ponto de equilíbrio (caso fosse posto na vertical). Já para o pêndulo, o período depende do comprimento do fio e da gravidade. Mesmo que você não soubesse a dependência exata, poderia somente ver as forças externas que atuam e cada sistema (no primeiro caso a restituição  da mola e no segundo peso). Como uma simples análise dimensional podemos saber como se da tal dependência.

Resolução: Como já percebemos, para o sistema "massa-mola" não há dependência da gravidade, logo o período não muda. Para o pêndulo, temos:

T = [g]^\alpha [l]^\beta

Sendo T o período, g a gravidade e l o comprimento do fio. Colocando a dimensão de cada:

s^1 m^0 = [m]^\alpha [s]^{-2\alpha} [m]^\beta

Obtemos assim:

\alpha = -\beta   e   \beta = \frac{1}{2}

E assim vemos que o período depende  do inverso da raiz da velocidade. E assim tempos:

g'=4g\rightarrow T'=\frac{T}{2} = 2segundos

Para mais sobre análise dimensional, dê uma olhadinha na Ideia 4

Intermediário: 

Situação Física: A primeira lente gerará uma imagem do objeto, a qual servirá de objeto para a segunda lente. Juntando as equações, obtemos uma relação entre a posição da segunda imagem e a do objeto.

Resolução: Temos, para a primeira imagem:

(I) - f_{1}^{-1}=x^{-1}+y^{-1}

Onde x é a distância do objeto a lente e y da imagem a lente. Agora para a segunda lente, a imagem está a uma distância d-y desta, logo:

(II) - f_{2}^{-1}=(d-y)^{-1}+k^{-1}

Sendo k a posição da imagem final. Pela equação (I), obtemos y:

y=\frac{xf_{1}}{x-f_{1}}

Substituindo em (II):

f_{2}^{-1}=(d-\frac{xf_{1}}{x-f_{1}})^{-1}+k^{-1}\rightarrow k^{-1}f_{2}^{-1}-(d-\frac{xf_{1}}{x-f_{1}})^{-1}

Assim temos:

k=(\frac{1}{f_{2}}-\frac{x-f_{1}}{d(x-f_{1})-xf_{1}})^{-1}\rightarrow k=\frac{f_{2}dx-f_{1}f{2}d-f_{2}f{1}x-f_{2}f_{2}x}{f_{2}f{1}-df_{1}+x(d-f_{1}-f_{2})}

Isolando o x, podemos ver que os temos dependentes de x somem quando:

d=f_{1}+f_{2}

Também é possível resolver derivando a função em x e dizendo que o resultado é 0 (pois não há variação devido a x).

Avançado:

Situação Física: Devido a um equilíbrio entre a resultante centrípeta e a força gravitacional, a partícula possui órbita de um certo raio r_{0}. Equilibrando as forças, sabendo que a força gravitacional corresponde a derivada em r do potencial , encontramos tal raio. Para a oscilação, podemos usar coordenadas polares, porém um modo menos trabalhoso é usar que a frequência corresponde a raiz da derivada segunda do potencial efetivo dividida pela massa.

Resolução: 

a) Para a força:

F=\frac{d\beta r^k}{dr}=\beta kr^{k-1}\rightarrow \frac{mv^2}{r}=\beta kr^{k-1}

Temos também:

v^2=\frac{L^2}{m^2r^2}

E assim obtemos:

\frac{L^2}{mr^3}=\beta kr^{k-1}\rightarrow r_{0}=(\frac{L^2}{m\beta k})^{\frac{1}{k+2}}

B) Sabemos que a frequência de oscilação se da por:

w=\sqrt{\frac{V''_{eff}(r_{0})}{m}}

Onde V_{eff}(r_{0}) (potencial efetivo em r_{0}) se da por:

V_{eff}=\beta r^k +\frac{L^2}{mr^2}

Peguemos a segunda derivada do potencial:

V'_{eff}=\frac{d(\beta r^k +\frac{L^2}{2mr^2})}{dr}=\beta kr^{k-1}-2\frac{L^2}{2mr^3}

V''_{eff}=\frac{dV'_{eff}}{dr}=\beta k(k-1)r^{k-2}+\frac{3L^2}{mr^4}\rightarrow V''_{eff}=frac{1}{r^4}(\frac{3L^2}{m}+\beta k(k-1)r^{k+2})

Os r correspondem nesse caso a r_{0}. Substituindo (para deixar bonito) temos:

V''_{eff}(r_{0})=\frac{L^2(k+2)}{mr^4_{0}}

E, por fim:

w=\frac{L}{mr^2_{0}}\sqrt{k+2}

Podemos substituir r_{0} novamente, mas assim se torna mais prático de trabalhar.