1 Rolling of a hexagonal prism!

1.1 Problem text

Consider a long, solid, rigid, regular hexagonal prism like a common type of pencil (Figure
1.1). The mass of the prism is M and it is uniformly distributed. The length of each
side of the cross-sectional hexagon is a. The moment of inertia I of the hexagonal prism
about its central axis is
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I= EMa2 (1.1)
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Figure 1.1: A solid prism with the cross section of a reqular hexagon.

The moment of inertia I’ about an edge of the prism is

17
I' = —Ma? (1.2)
12

a) (3.5 points) The prism is initially at rest with its axis horizontal on an inclined plane
which makes a small angle # with the horizontal (Figure 1.2). Assume that the surfaces
of the prism are slightly concave so that the prism only touches the plane at its edges.
The effect of this concavity on the moment of inertia can be ignored. The prism is now
displaced from rest and starts an uneven rolling down the plane. Assume that friction
prevents any sliding and that the prism does not lose contact with the plane. The angular
velocity just before a given edge hits the plane is w; while wy is the angular velocity
immediately after the impact.
Show that we may write

Wi = Sw; (1.3)

and write the value of the coefficient s on the answer sheet.
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Figure 1.2: A hexagonal prism lying on an inclined plane.

b) (1 point) The kinetic energy of the prism just before and after impact is similarly K;
and Kf.
Show that we may write
K;=rk; (1.4)

and write the value of the coefficient  on the answer sheet.

c¢) (1.5 points) For the next impact to occur K; must exceed a minimum value K
which may be written in the form

where g = 9.81 m/s? is the acceleration of gravity.
Find the coefficient ¢ in terms of the slope angle 6 and the coefficient r. Write your
answer on the answer sheet. (Use the algebraic symbol r, not its value).

d) (2 points) If the condition of part (c) is satisfied, the kinetic energy K; will approach
a fixed value K, as the prism rolls down the incline.
Given that the limit exists, show that K;, may be written as:

Ky =rMga (1.6)
and write the coefficient x in terms of 8 and r on the answer sheet.

e) (2 points) Calculate, to within 0.1°, the minimum slope angle 6, for which the uneven
rolling, once started, will continue indefinitely. Write your numerical answer on the answer
sheet.

1.2 Solution

a)
Solution Method 1

At the impact the prism starts rotating about a new axis, i.e. the edge which just hit
the plane. The force from the plane has no torque about this axis, so that the angular
momentum about the edge is conserved during the brief interval of impact. The linear
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2 Water under an ice cap®

2.1 Problem text

An ice cap is a thick sheet of ice (up to a few km in thickness) resting on the ground below
and extending horizontally over tens or hundreds of km. In this problem we consider the
melting of ice and the behavior of water under a temperate ice cap, i.e. an ice cap at
the melting point. We may assume that under such conditions the ice causes pressure
variations as a viscous fluid, but deforms in a brittle fashion, principally by vertical
movement. For the purposes of this problem the following information is given.

Density of water: pw = 1.000 -10% kg/m?
Density of ice: p; = 0.917 - 10% kg/m?
Specific heat of ice: c; =2.1-10% J/(kg °C)
Specific latent heat of ice: L;=34-10° J/kg
Density of rock and magma: pr = 2.9-10% kg/m?
Specific heat of rock and magma: ¢, =700 J/(kg °C)

Specific latent heat of rock and magma: L,=42-10° J/kg
Average outward heat flow through the Jg = 0.06 W/m?
surface of the earth:

Melting point of ice: Ty = 0°C, constant

a) (0.5 points) Consider a thick ice cap at a location of average heat flow from the interior
of the earth. Using the data from the table, calculate the thickness d of the ice layer
melted every year and write your answer in the designated box on the answer sheet.

b) (3.5 points) Consider now the upper surface of an ice cap. The ground below the ice
cap has a slope angle a. The upper surface of the cap slopes by an angle 3 as shown in
Figure 2.1. The vertical thickness of the ice at x = 0 is hy. Hence the lower and upper
surfaces of the ice cap can be described by the equations

Y1 = xtana, Yy = hg + xtan 3 (2.1)

Derive an expression for the pressure p at the bottom of the ice cap as a function of
the horizontal coordinate x and write it on the answer sheet.

Formulate mathematically a condition between ( and «, so that water in a layer
between the ice cap and the ground will flow in neither direction. Show that the condition
is of the form tan 8 = stana. Find the coefficient s and write the result in a symbolic
form on the answer sheet.

The line y; = 0.8 z in Figure 2.2 shows the surface of the earth below an ice cap. The
vertical thickness hg at = 0 is 2 km. Assume that water at the bottom is in equilibrium.

On a graph answer sheet draw the line y; and add a line y, showing the upper surface
of the ice. Indicate on the figure which line is which.

6 Authors: Gudni Axelsson and Thorsteinn Vilhjalmsson
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y = ho-t e

Figure 2.1: Cross section of an ice cap with a plane surface resting on an inclined plane
ground. S: surface, G: ground, I: ice cap.

¢) (1 point) Within a large ice sheet on horizontal ground and originally of constant
thickness D = 2.0 km, a conical body of water of height H = 1.0 km and radius » = 1.0
km is formed rather suddenly by melting of the ice (Figure 2.3). We assume that the
remaining ice adapts to this by vertical motion only.

Show analytically on a blank answer sheet and pictorially on a graph answer sheet,
the shape of the surface of the ice cap after the water cone has formed and hydrostatic
equilibrium has been reached.

d) (5 points) In its annual expedition an international group of scientists explores a
temperate ice cap in Antarctica. The area is normally a wide plateau but this time they
find a deep crater-like depression, formed like a top-down cone with a depth A of 100 m
and a radius r of 500 m (Figure 2.4). The thickness of the ice in the area is 2000 m.

After a discussion the scientists conclude that most probably there was a minor vol-
canic eruption below the ice cap. A small amount of magma (molten rock) intruded at
the bottom of the ice cap, solidified and cooled, melting a certain volume of ice. The
scientists try as follows to estimate the volume of the intrusion and get an idea of what
became of the melt water.

Assume that the ice only moved vertically. Also assume that the magma was com-
pletely molten and at 1200°C at the start. For simplicity, assume further that the intrusion
had the form of a cone with a circular base vertically below the conical depression in the
surface. The time for the rising of the magma was short relative to the time for the
exchange of heat in the process. The heat flow is assumed to have been primarily vertical
such that the volume melted from the ice at any time is bounded by a conical surface
centered above the center of the magma intrusion.

Given these assumptions the melting of the ice takes place in two steps. At first the
water is not in pressure equilibrium at the surface of the magma and hence flows away.
The water flowing away can be assumed to have a temperature of 0°C. Subsequently,
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Figure 2.2: Cross section of a temperate ice cap resting on an inclined ground with water
at the bottom in equilibrium. G: ground, I: ice cap.

hydrostatic equilibrium is reached and the water accumulates above the intrusion instead
of flowing away.

When thermal equilibrium has been reached, you are asked to determine the following
quantities. Write the answers on the answer sheet.

1. The height H of the top of the water cone formed under the ice cap, relative to the
original bottom of the ice cap.

2. The height h; of the intrusion.

3. The total mass my, of the water produced and the mass m' of water that flows
away.

Plot on a graph answer sheet, to scale, the shapes of the rock intrusion and of the
body of water remaining. Use the coordinate system suggested in Figure 2.4.
2.2 Solution
a)

Based on the conservation of energy we have
Jg -1 year = L;p;d (2.2)
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3 Faster than light?’

3.1 Problem text

In this problem we analyze and interpret measurements made in 1994 on radio wave
emission from a compound source within our galaxy.

The receiver was tuned to a broad band of radio waves of wavelengths of several
centimeters. Figure 3.1 shows a series of images recorded at different times. The contours
indicate constant radiation strength in much the same way as altitude contours on a
geographical map. In the figure the two maxima are interpreted as showing two objects
moving away from a common center shown by crosses in the images. (The center, which
is assumed to be fixed in space, is also a strong radiation emitter but mainly at other
wavelengths). The measurements conducted on the various dates were made at the same
time of day.

The scale of the figure is given by a line segment showing one arc second (as). (1 as =
1/3600 of a degree). The distance to the celestial body at the center of the figure, indicated
by crosses, is estimated to be R = 12.5 kpc. A kiloparsec (kpc) equals 3.09 -10'® m. The
speed of light is ¢ = 3.00 -10* m/s. Error calculations are not required in the solution.

a) (2 points) We denote the angular positions of the two ejected radio emitters, relative
to the common center, by 6;(t) and 6(t), where the subscripts 1 and 2 refer to the left
and right hand ones, respectively, and ¢ is the time of observation. The angular speeds, as
seen from the Earth, are w; and wy. The corresponding apparent transverse linear speeds
of the two sources are denoted by v} | and vj .

Using Figure 3.1, make a graph to find the numerical values of w; and w, in milli-arc-
seconds per day (mas/d). Also determine the numerical values of v} | and vy |, and write
all answers on the answer sheet. (You may be puzzled by some of the results).

b) (3 points) In order to resolve the puzzle arising in part (a), consider a light-source
moving with velocity ¥ at an angle ¢ (0 < ¢ < ) to the direction towards a distant
observer O (Figure 3.2). The speed may be written as v = (¢, where ¢ is the speed of
light. The distance to the source, as measured by the observer, is R. The angular speed
of the source, as seen from the observer, is w, and the apparent linear speed perpendicular
to the line of sight is v/,

Find w and ¢, in terms of 3, R and ¢ and write your answer on the answer sheet.

¢) (1 point) We assume that the two ejected objects, described in the introduction and in
part (a), are moving in opposite directions with equal speeds v = e. Then the results of
part (b) make it possible to calculate § and ¢ from the angular speeds w; and w, and the
distance R. Here ¢ is the angle defined in part (b), for the left hand object, corresponding
to subscript 1 in part (a).

Derive formulas for # and ¢ in terms of known quantities and determine their numerical
values from the data in part (a). Write your answers in the designated fields on the answer
sheet.

d) (2 points) In the one-body situation of part (b), find the condition for the apparent
perpendicular speed v/, to be larger than the speed of light c.

"Authors: Einar Gudmundsson, Knitur Arnason and Thorsteinn Vilhjalmsson
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Figure 3.1: Radio emission from a source in our galazy.
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Figure 3.2: The observer is at O and the original position of the light source is at A. The
velocity vector is U.

Write the condition in the form 3 > f(¢) and provide an analytic expression for the
function f on the answer sheet.

Draw on the graph answer sheet the physically relevant region of the (3, ¢)-plane.
Show by shading in which part of this region the condition v/, > ¢ holds.

e) (1 point) Still in the one-body situation of part (b), find an expression for the maximum
value (v' )maz Of the apparent perpendicular speed v/, for a given (3 and write it in the
designated field on the answer sheet. Note that this speed increases without limit when
68— 1.

f) (1 point) The estimate for R given in the introduction is not very reliable. Scientists
have therefore started speculating on a better and more direct method for determining R.
One idea for this goes as follows. Assume that we can identify and measure the Doppler
shifted wavelengths A\; and Ay of radiation from the two ejected objects, corresponding to
the same known original wavelength )y in the rest frames of the objects.
Starting from the equations for the relativistic Doppler shift,

A= Ao(1—Bcosg)(1—3?)""/2 and assuming, as before, that both objects have the same
speed, v, show that the unknown 3 = v/c can be expressed in terms of Ay, A;, and s as

ﬁ:\/l—%. (3.1)

Write the numerical value of the coefficient o in the designated field on the answer sheet.
You may note that this means that the suggested wavelength measurements will in
practice provide a new estimate of the distance.

3.2 Solution

a) On Figure 3.1 we mark the centers of the sources as neatly as we can. Let 0;(t) be
the angular distance of the left center from the cross as a function of time and 65(¢) the
angular distance of the right center. We measure these quantities on the figure at the
given times by a ruler and convert to arcseconds according to the given scale. This results
in the following numerical data:
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