Figure 1.2: A hexagonal prism lying on an inclined plane.

b) (1 point) The kinetic energy of the prism just before and after impact is similarly K;
and Kf.
Show that we may write
K;=rk; (1.4)

and write the value of the coefficient  on the answer sheet.

c¢) (1.5 points) For the next impact to occur K; must exceed a minimum value K
which may be written in the form

where g = 9.81 m/s? is the acceleration of gravity.
Find the coefficient ¢ in terms of the slope angle 6 and the coefficient r. Write your
answer on the answer sheet. (Use the algebraic symbol r, not its value).

d) (2 points) If the condition of part (c) is satisfied, the kinetic energy K; will approach
a fixed value K, as the prism rolls down the incline.
Given that the limit exists, show that K;, may be written as:

Ky =rMga (1.6)
and write the coefficient x in terms of 8 and r on the answer sheet.

e) (2 points) Calculate, to within 0.1°, the minimum slope angle 6, for which the uneven
rolling, once started, will continue indefinitely. Write your numerical answer on the answer
sheet.

1.2 Solution

a)
Solution Method 1

At the impact the prism starts rotating about a new axis, i.e. the edge which just hit
the plane. The force from the plane has no torque about this axis, so that the angular
momentum about the edge is conserved during the brief interval of impact. The linear
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momentum of the prism as a whole has the same direction as the velocity of the center of
mass (15 = M e where the subscript C refers to the center of mass), and this direction
is easy to follow when we know the axis of rotation at a given time. Just before impact J2
is directed 30° downwards relative to the plane, but will after impact point 30° upwards
from the plane, see Figure 1.3.

Figure 1.3: The linear momentum of the prism as a whole, before and after impact.

To find the angular momentum about the edge of impact just before the impact we
use the equation relating angular momentum L about an arbitrary axis to the angular
momentum L about an axis through the center of mass parallel to the first one:

E:E0+MFOXUC (17)

where the subscript C refers to the center of mass. Here, this is applied to an axis at the
point of impact so that 7 is the vector from that point to the center of mass (Figure
1.3). The vectors on the right hand side of equation (1.7) both have the same direction.
Hence we get for the quantities just before impact?

7o X Uil = re veisin30® =a® w; / 2 (1.8)
1 5 1 11
Li:Iwi+§Ma2wz- = <E+§)Ma2wi:EMa2wi (1.9)

On the other hand, angular momentum about the edge just after impact is, from
equation (1.2):3

2This may also be done by using Steiner’s theorem twice, going from the previous axis of impact to
the center of mass and from there to the new axis of impact.
3 Alternatively:



Ly =Tws= 1—7Ma Wy (1.10)
12
where the subscript f always refers to the situation just after impact. We may notice that
the difference comes about because of the different directions of ¥c; and T¢;. Now, when
we state the conservation of angular momentum, L; = Ly, we obtain a relation between
the angular velocities as follows:

11/12 11
W= 1.11
ARETID) 17" (1.11)
We thus get:
s=11/17 (1.12)

We may note that s is independent of a, w;, and 6.

Solution Method 2

On impact the prism receives an impulse P [N - s] from the plane at the edge where the
impact occurs. There is no reaction at the edge which is leaving the plane. The impulse
has a component Py parallel to the inclined plane (positive upwards along the incline in
Figure 1.3 and a component P, perpendicular to the plane (positive upwards from the
plane in the same figure).

We can set up three equations with the three unknowns P, P, and the ratio s = wf_.
The quantity P is the change in the parallel component of the linear momentum of the
prism and P, is the corresponding change in perpendicular linear momentum. Thus:

1
P = M(Wi+Wf)a'§. (1.14)
We finally have:
1 3
Pla=- — Ha£ = I (w; — wy) (1.15)

2 2

since the right hand side is the change in angular momentum about the center of mass.
Equations (1.13), (1.14) and (1.15) can now be solved for the ratio s = =L giving, of
course, the same result as before.

Lf = IWf-f-M|F0X170f|:IWf+Ma2WfSin900

1
= (152 +1> Ma? wp = 1—; Ma? wy



b)

The linear speed of the center of mass just before impact is aw; and just after impact
it is awy. We know that we can always write the kinetic energy of a rotating rigid body
as a sum of jinternal® and ,external“ kinetic energy:

1 1
Ky =5 I w? + 5 M Ve, (1.16)

From this we see that in our case the kinetic energy K, is proportional to w? both
before and after impact so that we get

11)? 121
Ki=rK=|[=) K= =K, 1.17
r=r <17> 289 (117)
SO
r = 121/289 ~ 0.419 (1.18)

c)

The kinetic energy Ky after the impact must be sufficient to lift the center of mass
to its highest position, straight above the point of contact. The angle through which 7¢
moves for this is

(0%
=——10 1.1
0=t (119)

where a = 60° is the top angle of the triangles meeting at the center of the polygon.* The
energy for this lifting of the center of mass is

Ey = Mga(l — cosz) = Mga (1 — cos(30° — 0)) (1.20)

and we get the condition

Ky =1rK; > Ey= Mga(1—cos(30° —6)) (1.21)
thus

0= % (1 — cos(30° — 0)) (1.22)

(Note that cos(30° — 0) = ? cosf + 3 sinf).

d)
Let K;, and Ky, be the kinetic energies just before and just after the nth impact.
We have shown that we have the relation

“In the general case a = 27 /N.



Kin=r Kipn (1.23)

where r = % for a hexagonal prism. Between subsequent impacts the height of the center

of mass of the prism decreases by asinf and its kinetic energy increases for this reason
by

A = Mgasin 6 (1.24)

We therefore have

Ki,n+1 == TKi,n + A. (125)

One does not have to write out the complete expression K, as a function of K;; and
n to find the limit. This would actually be a proof that the limit exists (see below) but
this is given in the problem text. Hence one can make K, ~ K, arbitrarily accurate
for sufficiently large n. The limit K; o must thus satisfy the iterative formula, i.e.

Ki,O = rKi,O + A (126)
yielding the solution
A
Ky = 1.27
o= (1.27
i.e.
sin @
K = (1.28)
1—17r

We can also solve the problem explicitly by writing out the full expressions:

KZ',Q = r Ki,l + A (129)
Ki,g = r Ki,Z + A= ’I"QKZ',l + (1 + T)A (130)
Kin = MK +(04+r+... .+ A (1.31)
1—gpnt
= " 1K+ —— A (1.32)
- T

In the limit of n — oo we get

A
Kin — Kip = T—r (1.33)

which is, of course, the same result as before.
If we calculate the change in kinetic energy through a whole cycle, i.e. from just before impact
number n until just before impact n + 1 we get

AKipn=Kini1 —Kipy = (r—Dr" 1K1 +r" 1A (1.34)
A= (1—-7)K; 1) (1.35)



This is positive if the initial value K;; < K;g so that K;, will then increase up to the limit
value Kj;o. If, on the other hand, K;; > Kjp, the kinetic energy K;, just before impact will
decrease down to the limit Kj .

All of this may remind you of motion with friction which increases with speed. Mathemati-
cally speaking, the main difference is that we here are dealing with difference equations instead
of differential equations.

)
For indefinite continuation the limit value of K; in part (d) must be larger than the
minimum value for continuation found in part (c):

: A= . ! Mgasinf > Mga (1 — cos(30° — 0)) /r (1.36)
—r —r

_ _ 121,
We put A =~ = &

Asin@ > 1 — cos 30° cos § — sin 30° sin 0 (1.37)
(A+1/2)sin6 + v3/2cos 6 > 1 (1.38)

To solve this we define®

_ . A+1/2 N .
u = arcco <\/(A T 3/4) ~ 35.36 (1.39)

and obtain

cosusin® +sinucosf > 1/\/(A+1/2)2+3/4 (1.40)
sin(u+60) > 1/y/(A+1/2)2 +3/4 (1.41)
0> arcsin{1/\/(A+1/2)2+3/4} —u ~ 41.94° —35.36° = 6.58°  (1.42)
That is
0o ~ 6.58° (1.43)

If 8 > 6y and the kinetic energy before the first impact is sufficient according to part
(c), we will, under the assumptions made, get an indefinite “rolling”.

5You can of course solve any of the inequalities in a purely numerical way, e.g. by progressive guessing
or by using the approximations sin ¢ ~ ¢ and cos ¢ ~ 1 — ¢?/2.



1.3 Grading scheme

Part 2(a)

Answer: s = wy/w; = 11/17, equation (1.12) | 3.5
Part 2(b)

Answer: r = K;/K; = s> = 121/289, equation (1.18) | 1.0
Part 2(c)

Answer: K; i, by ¢, equation (1.22) ‘ 1.5
Part 2(d)

Answer: Limit K; by k =sinf/(1 — r), equation (1.28) | 2.0
Part 2(e)

Answer: Minimum angle ) = 6.58°, equation (1.43) | 2.0




Y1 = 0.8x

y = ho—]
y=0 7
r=0

Figure 2.2: Cross section of a temperate ice cap resting on an inclined ground with water
at the bottom in equilibrium. G: ground, I: ice cap.

hydrostatic equilibrium is reached and the water accumulates above the intrusion instead
of flowing away.

When thermal equilibrium has been reached, you are asked to determine the following
quantities. Write the answers on the answer sheet.

1. The height H of the top of the water cone formed under the ice cap, relative to the
original bottom of the ice cap.

2. The height h; of the intrusion.

3. The total mass my, of the water produced and the mass m' of water that flows
away.

Plot on a graph answer sheet, to scale, the shapes of the rock intrusion and of the
body of water remaining. Use the coordinate system suggested in Figure 2.4.
2.2 Solution
a)

Based on the conservation of energy we have
Jg -1 year = L;p;d (2.2)
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Figure 2.3: A vertical section through the mid-plane of a water cone inside an ice cap. S:
surface, W: water, G: ground, I: ice cap.

_Jo-lyear 0.06Js ' m 236525 -24 -60 -60s

d —

=6.1-10"%m (2.3)

b)
Let p, be the atmospheric pressure, taken to be constant. At a depth z inside the ice
cap the pressure is given by:

P = pigZ + Pa (2.4)

Therefore, at the bottom of the ice cap, where z = yy — y;:

p = pig(y2— 1) +pa (2.5)
= pigx(tanB — tan ) + p;gho + Pa

For water not to move at the base of the ice cap the pressure must be hydrostatic
(trivial, but can be seen from Bernoulli’s equation), i.e.
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Figure 2.4: A wvertical and central cross section of a conical depression in a temperate ice
cap. S: surface, G: ground, I: ice cap, M: rock/magma intrusion, W: water. Note that
the figure is NOT drawn to scale.

p = constant — py, gy

= constant — py,gx tan a

Therefore
pigz(tan f — tan o) = —p,gz tan « (2.9)
leading to

_ . A
tan 3 = PPl = — 2P tana ~ —0.091 tana (2.10)

Pi Pi
s =—Ap/p; = —0.091 (2.11
2.12)

where the minus-sign is significant.
This can also be seen in various ways by looking at a mass element of water at the
bottom of the ice and demanding equilibrium. — We now proceed with the solution.

14



With tan a = 0.8, we get tan § = —0.073 and

y2 = 2 km — 0.073 = (2.13)

The students are supposed to draw this line on a graph.

c)
Since the ice adapts by vertical motion only we see that the conical depression at the
surface will have the same radius of 1.0 km as the intrusion. According to (b) it will have

a depth of

A
h = |rtanf| = 2P tan o (2.14)
A
= 2Py (2.15)
Pi
= 0.091 -1km =91 m. (2.16)

The students are supposed to show this result as a graph.

d)

The volume of a circular cone is V' = %ﬂ?ﬂZh. We assume that the height of the intrusion
is h1. We may say that it firstly melts an ice cone of its own volume V; = %m“?hl. Pressure
equilibrium has not yet been reached. Hence the water will flow away and the ice will keep
contact with the face of the intrusion making the upper surface of the ice horizontal again.
The intrusion then melts a volume equivalent to a cone of height hy, = %hl whereupon
pressure equilibrium has been reached (following part (c¢)). During this second phase the
melted water will also flow away. Assuming that the intrusion still has not cooled down
to 0°C the intrusion will further melt a volume equivalent to a cone of height hs, its water
accumulating in place, forming a cone of height h; = ;’—; hs relative to the top of the
intrusion. The total height of the ice cone melted is

hiot = h1 + ha + h3 (2.17)
The depth of the depression at the surface will be given by

A
h="=(h + 1) (2.18)

pi

which is most easily seen by considering pressure equilibrium in the final situation (again
following part (c)). Thus, the requested height of the top of the water cone is

H:h1+hg:£ip h=1.1x 10°m (2.19)

The heat balance gives

1
3 mr? {prhi(Ly +cr AT) — pi Li hyor} =0 (2.20)
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where AT = 1200°C is the change in temperature of the rock intrusion. Following equa-
tion (2.17) and using the facts that hy = %hl and hs = B2hy we obtain

A w w
hior = hy + —?hl + p—ﬁé,, = pf (hy + hy) (2.21)

i Pi Pi

Therefore (using equation (2.19))

Pw ! Pw Pw 3
higt = — (hy +hy)=— H=-—— h=120-10"m 2.22
ol Pi(l 3) Pi Ap ( )

This implies that the cone does not reach the surface of the ice cap. Inserting the
result into the equation (2.20) we can solve for hy:

Pi Pw Lz h
- hy (L, y AT) = ———— 2.23
prhi (Lr + ¢ AT) A (2.23)
Pi Pw Lz h
h 2.24
! Ap pr (Ly + ¢ AT) ( )
= 103 m (2.25)

The total mass of water formed is of course equal to the mass of the ice melted and is
Myor = pi (1/3) 7 1% hyoy = 2.9 - 10 kg (2.26)

The mass of the water which flows away is

m/ h’l + h'2 m . Pw hl
= tot =
hiot ’ Pi Mot

The students are finally expected to plot the shapes of the rock intrusion and the
water body.

My = 2.7 - 10'° kg (2.27)

2.3 Grading scheme

2(a)
Answer: equation (2.3),d =6.1-10"° m 0.5
2(b)
Answer i): equation (2.6): p = p;gx(tan § — tan ) + p;gho + pa 1.0
Answer ii): equation (2.10): s = -2 = —% 2.0
Answer iii): Graph based on equation (2.13) 0.5
2(c)
Answer: Depth, radius and graph, » = 1000 m, h =91 m 1.0
2(d)
Answer i): Height of water cone as in (2.19): H =1.1-10° m 2.0
Answer ii): Height of intrusion as in (2.25): h; =103 m 1.0
Answer iii): Total mass of melt water as in (2.26): my = 2.9 - 10! kg 0.5
Answer iv): Mass of water flowing away as in (2.27): m' =2.7-10'° kg | 1.0
Answer v): Graph 0.5
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Figure 3.2: The observer is at O and the original position of the light source is at A. The
velocity vector is U.

Write the condition in the form 3 > f(¢) and provide an analytic expression for the
function f on the answer sheet.

Draw on the graph answer sheet the physically relevant region of the (3, ¢)-plane.
Show by shading in which part of this region the condition v/, > ¢ holds.

e) (1 point) Still in the one-body situation of part (b), find an expression for the maximum
value (v' )maz Of the apparent perpendicular speed v/, for a given (3 and write it in the
designated field on the answer sheet. Note that this speed increases without limit when
68— 1.

f) (1 point) The estimate for R given in the introduction is not very reliable. Scientists
have therefore started speculating on a better and more direct method for determining R.
One idea for this goes as follows. Assume that we can identify and measure the Doppler
shifted wavelengths A\; and Ay of radiation from the two ejected objects, corresponding to
the same known original wavelength )y in the rest frames of the objects.
Starting from the equations for the relativistic Doppler shift,

A= Ao(1—Bcosg)(1—3?)""/2 and assuming, as before, that both objects have the same
speed, v, show that the unknown 3 = v/c can be expressed in terms of Ay, A;, and s as

ﬁ:\/l—%. (3.1)

Write the numerical value of the coefficient o in the designated field on the answer sheet.
You may note that this means that the suggested wavelength measurements will in
practice provide a new estimate of the distance.

3.2 Solution

a) On Figure 3.1 we mark the centers of the sources as neatly as we can. Let 0;(t) be
the angular distance of the left center from the cross as a function of time and 65(¢) the
angular distance of the right center. We measure these quantities on the figure at the
given times by a ruler and convert to arcseconds according to the given scale. This results
in the following numerical data:
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time 6, 0y

[days] | [as] [as]
0 0.139 | 0.076
7 0.253 | 0.139
13 0.354 | 0.190
20 0.468 | 0.253
27 0.601 | 0.316
34 0.709 | 0.367

The uncertainty in the readings by the ruler is estimated to be £0.5 mm, resulting in

the uncertainty of + 0.013 as in the € values. We plot the data in Figure 3.3.

separation (as)

15

time (days)

20

25

30

Figure 3.3: The angular distances 61 and 0y (in as) as functions of the time in days.

Fitting straight lines through the data results in:

wy = df;/dt = (17.0 £ 1.0) mas/day = 9.54 - 10 *rad/s
wy = df,/dt = (8.7 & 1.0) mas/day = 4.88 - 10 rad/s
v, = w R=954-10""-12.5-3.09-10"
= 3.68-10°m/s ~ (1.23 £ 0.07) c
vy, = 1.89-10°m/s ~ (0.63 £ 0.07) c

b) We consider the motion of the source during the time interval At from the point A to

the point A’, see Figure 3.4.
We then have

FAA/:FA/—FAZJ'At.

(3.7)

Now let At" denote the difference in arrival times at O of the signals from A and A’

Due to the different distances to A and A’ and the finite speed of light, ¢, we have

20



AI

Figure 3.4: The observer is at O and the original position of the source is at A. The
velocity vector is .

At,:At—{—(TAI—TA)/C. (38)

For small At, such that v At << r, = R, we have

ra—1ra R —v At cos ¢ (3.9)

and hence
At' =~ At (1= fcoso); f=v/c. (3.10)
This implies that an observer at O will find the apparent transverse speed of the source

to be

, _Ax_ Ax B c3sin ¢
VLT A T A (1—Bcosp) 1— Bcosad (3.11)

where we have used that the real transverse speed in the reference frame of the observer
is v; = Azx/At = ¢fsin ¢.
The angular speed observed at O is

v c3sin ¢

“TR "~ R (1 — B cos ¢) (3.12)

c¢) Figure 3.5 shows the situation in this case. Note the relations given in the caption.
Taking ¢ = ¢; we have sin ¢o = sin ¢ and cos ¢ = — cos ¢. Equation (3.12) then gives:

0 ¢ sin ¢
w1 R (1 _6COS¢) (313)
wy = —bcsing (3.14)

R (14 Bcos¢)
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Figure 3.5: If the two objects have equal speeds but opposite velocities we have vy = vy =

v, by =P =f and ¢ =T — ¢1.

The quantities wy, wy and R are given, but 3 and ¢ are to be determined as stated in
the problem text. Simple algebra gives:

(1—0 cosd) wiwa = [ csing wy/R (3.15)
(145 coso) wowy = [csingw/R. (3.16)

Subtracting (3.15) from (3.16) gives:

23 cospwyw; =pfcsing (w —wy)/R (3.17)

2R
¢ (w1 —ws)

2R(.d2(.01 )

¢ (01 — wa) (3.19)

¢ = arctan (

Dividing (3.15) by (3.16) gives § in terms of cos ¢ and the known quantities w; and
Wo:

wy (1 =0 cosg) =wy (L+ 5 cos ) (3.20)

W1 — W2

b= cos ¢ (wy + wz) (3:21)

Inserting the values of w; and wy from part (a) and the given values of R and ¢ we get:

¢ = arctan(2.57) = 1.20 rad = 68.8° 4 2° (3.22)
B = 0.892+0.08 (3.23)
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d) Equation (3.11) shows that the observer will find the apparent transverse speed to be
larger than or equal to the speed of light if and only if:

% > 1. (3.24)
If 3 < 1 condition (3.24) is equivalent to:
Bsing > 1— feosd (3.25)
B(sing +cosg) > 1 (3.26)
52 (sinqﬁcos% + cos ¢ sin %) > 1 (3.27)
sin (¢ + %) > % (3.28)
and hence (3.24) is satisfied if:

5> f(6) = (Vasin(é+7/9)) . (3.29)

The physically relevant region in the (3, ¢)-plane is:
(B, ®) € [0,1[x[0, ] . (3.30)

It is obvious that (3.24) can only be satisfied for ¢ € [0,7/2] and (3.28) can only have
a solution for ¢ if 8 > 1/1/2.
We therefore take a closer look at the region

(B,¢) € [27V21] x [0,7/2] (3.31)

The mapping
(8, ¢) = Bsin (cb + %) (3.32)

is continuous in this region. It is therefor sufficient to look at the boundary of the region,
defined by the equality sign in (3.28):

Bsin (¢ + %) - % (3.33)

This defines  as a function of ¢ which is shown in Figure 3.6 as the curve bounding
the shaded area where v/, > c.

e) To find the extrema of v/, as a function of ¢ we differentiate (3.11) and get

d (vl) _ Bleos¢ — ) (3.34)

6\ ) " T Beoso)
This is zero for ¢ = ¢,, where:

23



i

Sz =7
zZ ",““III’ ‘
sty .
ooseiti . <
e
So58THA >
<7

V4
_ A
— = i’
=

4
75 ;“‘

SO
SO
SO

4
oo
%
Q
QOQORR

Figure 3.6: The region between the Figure 3.7: The curved surface is v’ /c

horizontal line and the curve in the as a function of B and ¢. The plane
upper left hand corner shows where represents the constant function 8 = 1.
v Je> 1.
CoS o = B ; ¢m = arccos 3 €]0, /2] (3.35)

To see that this is indeed a maximum, we differentiate (3.34) again and get:

(v sin ¢ [ sin ¢(cos ¢ — [3)
i (2) = (T Femar 2T o) (3:36)

At the extremum

d2 / : m
iw (V)] - 30

showing that ¢, corresponds to a maximum. From (3.11) and (3.35) the maximum
apparent transverse speed is given:

(vj_)maa: = L (338)

J1-p°
From this and (3.35) we see that

/ .
(UL)max ,6'——>1> S O d)m ,6'——>1> 0. (339)

Figure 3.7 shows v/, /c as a function of § and ¢ in the region (3, ¢) € [27/2 1] x [0,7/2].

f) We have the equations for relativistic Doppler-shift:
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A2 1F Bcos¢

= 3.40
N (3.40)
We add them, define an auxiliary ratio p and solve for /3.
)\1 + )\2 1
= = 3.41
P By =5 (3.41)
P15 =1 (3.42)

g:m:\/bfi (3.43)

AL+ Ag)?
giving
a=4 (3.44)

Adding equation (3.43) to the set of equations (3.18) and (3.21) we have three equations
which can be solved for the three unknowns 3, ¢ and R. For instance, we may calculate (3
from (3.43), insert that into (3.21), and solve for ¢. The distance R can then be obtained
from (3.18). Thus the measurement of the Doppler-shifted wavelengths turns out to give
an estimate of the distance to the source provided that w; and wy are known.

3.3 Grading scheme

Part 1(a)
Answer i): equation (3.2), w; in the range (16.5-17.5) mas/day 0.8
Answer ii): equation (3.3), wy in the range (8.2-9.2) mas/day 0.8
Answer iii): equation (3.4), for v] | in the range (1.13-1.30)c 0.2
Answer iv): equation (3.6), for v | in the range (0.56-0.70)c 0.2
Part 1(b)

Answer i): v/ (5, ¢), equation (3.11) 2.5
Answer ii): w(f3, ¢), equation (3.12) 0.5
Part 1(c)

Answer i): ¢(wy,ws), equation (3.19) 0.3
Answer ii): (w1, ws), equation (3.21) 0.3
Answer iii): ¢ numerical in the range 67° - 71° 0.2
Answer iv): 3 numerical in the range 0.81-0.97 0.2
Part 1(d)

Answer i): Condition 3 > f(¢), equation (3.29) 1.0
Answer ii): Condition on (£, ¢), graph 1.0
Part 1(e)

Answer: (V' )maz, equation (3.38) | 1.0
Part 1(f)

Answer: [ in terms of A-s, by «, equation (3.44) | 1.0
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