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Solution to Theoretical Question 1 
 

A Swing with a Falling Weight 

Part A 
(a) Since the length of the string θRsL +=  is constant, its rate of change must be zero. 

Hence we have 
0=+ θ Rs                              (A1) 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ , so 

tstRvQ
ˆˆ




 −== θ                           (A2) 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 
is ttsrstsrsr ∆+−=∆+−∆=′∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( 



 θθ . It follows 

tsrsv ˆˆ 



 +−=′ θ                            (A3) 

 
 
 
 
 
 
 
 
 
 
(d) The velocity of the particle relative to O is the sum of the two relative velocities given in 

Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ 





 −=++−=+′=                (A4) 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change v∆  is given 
by tvvvt ∆=∆=∆⋅− θθ 

)ˆ( . Therefore, the t̂ -component of the acceleration tva ∆∆= /  
is given by θvat −=⋅ ˆˆ . Since the speed v of the particle is θs  according to Eq. (A4), 
we see that the t̂ -component of the particle’s acceleration  at P is given by 

2)(ˆ θθθθ 

 ssvta −=−=−=⋅                        (A5) 

 
 
 
 
 
 

t̂  

Q 

r̂−  

s 

s+∆s ∆θ 

s∆θ 
P 

Figure A1 

r ′∆  
s+∆s 

t̂−  

Q 

r̂−  

v  
∆θ 

P 

θ∆v  

Figure A2 O 

∆θ 

v∆  
vv  ∆+  

∆v 

v 



 

 13 

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as 

dtsddtdvra /)(/ˆ θ −=−=⋅ . 

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by mghU −= . 
It may be expressed in terms of s and θ  as 

]sin)cos1([)( θθθ sRmgU +−−=                  (A6) 
 
 
 
 
 
 
 
 
 
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  U must 

assume its minimum value Um

mθ
. By differentiating Eq. (A6) with respect to θ and using 

Eq. (A1), the angle  corresponding to the minimum gravitational energy can be 
obtained. 

[ ]
θ

θθθ

θθ
θ

θ
θ

cos
cossin)(sin

cossinsin

mgs
sRRmg

s
d
dsRmg

d
dU

−=
+−+−=







 ++−=

 

At mθθ = , 0=
m

d
dU

θθ
. We have

2
πθ =m . The lowest point of the particle’s trajectory is 

shown in Fig. A4 where the length of the string segment of QP is s = L−πR /2. 
 
 
 
 
 
 
 
 
 
 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 
( ) )]2/([2/ RLRmgUUm ππ −+−==                  (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm of the 
particle at the lowest point of its trajectory must satisfy 
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mm UmvE +== 2
2
10                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−=                 (A9) 

 

Part B 
(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2
1)(

2
10 22 θθθ sRmgmvUmvE +−−=+==          (B1) 

From Eq. (A4), the speed v is equal to θs . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−==                   (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of the net 
force on the particle is –T + mg sin θ . From Eq. (A5), the tangential acceleration of the 
particle is )( 2θs− . Thus, by Newton’s second law, we have 

θθ sin)( 2 mgTsm +−=−                          (B3) 
 
 
 
 
 
 
 
 
 
 
 
 

According to the last two equations, the tension may be expressed as 

))(sin(2

)sin)]((
2
3

2
[tan2

]sin3)cos1(2[)sin(

21

2

θ

θθθ

θθθθ

yy
s

mgR
R
L

s
mgR

sR
s

mggsmT

−=

−−=

+−=+= 

          (B4) 

 
The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 
which .y2 = y1 sθ is called ( πθπ 2<< s ) and is given by 

2
tan)(

2
3 s

s R
L θ

θ =−                          (B5) 

or, equivalently, by 

2
tan

3
2 s

sR
L θ

θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
2
1tan

3
2)

8
(

16
cot

3
2

8
9 ππππππ +−+=+=

R
L               (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 
Table B1 shows that the tension T must be positive (or the string must be taut and straight) 
in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension T becomes zero and the 
part of the string not in contact with the rod will not be straight afterwards. The shortest 
possible value smin sθθ = for the length s of the line segment QP therefore occurs at and 
is given by 

Table B1 

 )( 21 yy −  θsin   tension T 

πθ <<0  positive positive positive 
πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 
πθθ 2<<s  positive negative negative 
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RRRRLs s 352.3
16

cot
3

2)
8

9
16

cot
3
2

8
9(min ==−+=−= ππππθ         (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to ss gsv θsinmin
2 −= . 

Hence the speed  v s

gR

gRgRgsv ss

133.1
16

cos
3

4
8

sin
16

cot
3

2sinmin

=

==−= πππθ

 is 

         (B9) 

 
(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. B3, it is 

projected with an initial speed  v s ),( ss yxP = from the position  in a direction making 
an angle )2/3( sθπφ −= with the y-axis. 
The speed Hv of the particle at the highest point of its parabolic trajectory is equal to the 
y-component of its initial velocity when projected. Thus, 

gRgRvv ssH 4334.0
8

sin
16

cos
3

4)sin( ==−= πππθ          (B10) 

The horizontal distance H traveled by the particle from point P to the point of maximum 
height is 

R
g

v
g

v
H sss 4535.0

4
9sin

22
)(2sin 22

==
−

= ππθ
              (B11) 

 
 
 
 
 
 
 
 
 
 
 

The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−= ππθθ         (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+= ππθθ        (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its maximum 
height without striking the surface of the rod. 
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Part C 
(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
 
 
 
 
 
 
 
 
 

When the weight has fallen a distance D and stopped, the law of conservation of total 
mechanical energy as applied to the particle-weight pair as a system leads to 

)( DhMgEMgh +−′=−                         (C1) 
where E′ is the total mechanical energy of the particle when the weight has stopped. It 
follows 

MgDE =′                               (C2) 
Let Λ be the total length of the string. Then, its value at θ = 0 must be the same as at any 
other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++= πθπΛ                 (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 
LDL )1( α−=−=                              (C4) 

From the last two equations, we obtain 
θθ RRDLs −=−−=                            (C5) 

After the weight has stopped, the total mechanical energy of the particle must be 
conserved. According to Eq. (C2), we now have, instead of Eq. (B1), the following 
equation: 

[ ]θθ sin)cos1(
2
1 2 sRmgmvMgDE +−−==′              (C6) 

The square of the particle’s speed is accordingly given by 





 +−+== θθθ sin)cos1(22)( 22

R
sgR

m
MgDsv              (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 

)(sin 2θθ smmgT −=+−                        (C8) 
From the last two equations, it follows 
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













 −+−+=





 +−+=

+=

θθθ

θθ

θθ

sin
2
3)cos1(2

sin3)cos1(22
)sin( 2

RmR
MD

s
mgR

sRD
m
M

s
mg

gsmT





             (C9) 

where Eq. (C5) has been used to obtain the last equality. 
We now introduce the function 

θθθθ sin
2
3cos1)( 






 −+−=

R
f                      (C10) 

From the fact RDL >>−= )( , we may write 

)sin(1cossin
2
31)( φθθθθ −+=−+≈ A

R
f                (C11) 

where we have introduced 
2)

2
3(1

R
A +=  ,  






= −

3
2tan 1 Rφ                   (C12) 

From Eq. (C11), the minimum value of f(θ) is seen to be given by 
2

min 2
3111 






+−=−=

R
Af                       (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, we have 
from Eq. (C9) the inequality 

0
2
311)( 2

min ≥





+−+

−
=+

RmR
LMf

mR
MD                (C14) 

or 







+






≈






++






≥+








RmR
M

RmR
M

mR
ML

2
3

2
311

2
            (C15) 

From Eq. (C4), Eq. (C15) may be written as 

)1(
2
31 α−






 +≥+








R
L

mR
ML

mR
ML                     (C16) 

Neglecting terms of the order (R/L) or higher, the last inequality leads to 

m
M

m
M

L
R

R
L

mR
ML

R
L

R
L

mR
ML

mR
ML

3
21

1

1
3
2

3
21

2
3

1
2
3

2
3

1
1

+
≈

+

−
=

+

−
=







 +

+







−≥α           (C17) 

The critical value for the ratio D/L is therefore 

m
Mc

3
21

1

+
=α                            (C18) 
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Marking Scheme 
 

Theoretical Question 1 
A Swing with a Falling Weight 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.3 pts. 

(a) 
 

0.5 

Relation between θ and s .  ( θ Rs −= )            
 0.2 for θ∝ s . 
 0.3 for proportionality constant (-R). 

(b) 
 

0.5 

Velocity  of Q relative to O.  ( tRvQ
ˆθ = )            

 0.2 for magnitude Rθ . 
 0.3 for direction t̂ . 

(c) 
 

0.7 

Particle’s velocity  at P relative to Q. ( tsrsv ˆˆ 



 +−=′ θ )    
 0.2+0.1 for magnitude and direction of r̂ -component. 
 0.3+0.1 for magnitude and direction of t̂ -component. 

(d) 
0.7 

Particle’s velocity  at P relative to O.  ( rsvvv Q ˆθ −=+′= ) 
 0.3 for vector addition of v ′  and Qv . 
 0.2+0.2 for magnitude and direction of v . 

(e) 
 

0.7 

t̂ -component of particle’s acceleration at P. 
 0.3 for relating a  or ta ˆ⋅  to the velocity in a way that implies 

svta /|ˆ| 2=⋅ . 
 0.4 for 2ˆ θ sta −=⋅  (0.1 for minus sign.) 

(f) 
 

0.5 

Potential energy U. 
 0.2 for formula mghU −= . 
 0.3 for θθ sin)cos1( sRh +−=  or U as a function of θ, s, and R. 

(g) 
 

0.7 

Speed at lowest point vm.  
 0.2 for lowest point at 2/πθ =  or U equals minimum Um. 
 0.2 for total mechanical energy 02/2 =+= mm UmvE . 

 0.3 for )]2/([2/2 RLRgmUv mm π−+=−= . 
Part B 

 
4.3 pts. 

(h) 
 

2.4 

Particle’s speed  vs when QP is shortest. 
 0.4 for tension T becomes zero when QP is shortest. 

 0.3 for equation of motion )(sin 2θθ smmgT −=+− . 

 0.3 for ]sin)cos1([2/)(0 2 θθθ sRmgsmE +−−==  . 

 0.4 for 
2

tan)(
2
3 s

s R
L θ

θ =− . 

 0.5 for 8/9πθ =s . 

 0.3+0.2  for gRgRvs 133.116/cos3/4 == π  
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(i) 
 

1.9 

The speed vH of the particle at its highest point. 
 0.4 for particle undergoes projectile motion when sθθ ≥ . 
 0.3 for angle of projection )2/3( sθπφ −= . 
 0.3 for Hv  is the y-component of its velocity at sθθ = . 
 0.4 for noting particle does not strike the surface of the rod. 
 0.3+0.2 for 

gRgRvH 4334.0)8/sin()16/cos(3/4 == ππ . 
Part C 

 
3.4 pts 

(j) 
 

3.4 

The critical value cα  of the ratio D/L. 
 0.4 for particle’s energy MgDE =′  when the weight has stopped. 
 0.3 for θRDLs −−= . 
 0.3 for ]sin)cos1([2/2 θθ sRmgmvMgDE +−−==′ . 

 0.3 for )(sin 2θθ smmgT −=+− . 
 0.3 for concluding T must not be negative. 
 0.6 for an inequality leading to the determination of the range of D/L. 
 0.6 for solving the inequality to give the range of α = D/L. 
 0.6 for )3/21( mMc +=α . 
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Solution to Theoretical Question 2 
 

A Piezoelectric Crystal Resonator under an Alternating Voltage 

Part A 
(a) Refer to Figure A1. The left face of the rod moves a distance v∆t while the pressure wave 

travels a distance u∆t with ρ/Yu = . The strain at the left face is 

u
v

tu
tvS −=−==

∆
∆∆



                         (A1a) 

From Hooke’s law, the pressure at the left face is 

uv
u
vYYSp ρ==−=                         (A1b) 

 
 
 
 
 
 
 
 
 
 
(b) The velocity v is related to the displacement ξ as in a simple harmonic motion (or a 

uniform circular motion, as shown in Figure A2) of angular frequency ku=ω . Therefore, 
if )(sin),( 0 tuxktx −= ξξ , then 

)(cos),( 0 tuxkkutxv −−= ξ .                          (A2) 
The strain and pressure are related to velocity as in Problem (a). Hence, 

)(cos/),(),( 0 tuxkkutxvtxS −=−= ξ                   (A3) 

)(cos),(
)(cos),(),(

0

0
2

tuxkkYtxYS
tuxkuktxuvtxp

−−=−=
−−==

ξ
ξρρ               (A4) 

--------------------------------------------------------------------------- 
Alternatively, the answers may be obtained by differentiations: 

)(cos),( 0 tuxkku
t

txv −−== ξ
∆
ξ∆ , 

)(cos),( 0 tuxkk
x

txS −== ξ
∆

ξ∆ , 

)(cos),( 0 tuxkkY
x

Ytxp −−=−= ξ
∆

ξ∆ . 

------------------------------------------------------------------------------ 

p 

u∆t 

t=0 

∆t/2 p p Figure A1 

v∆t 

∆t p p 

ξ 
kx−ω t 

v 

x 

0ξ  

Figure A2 
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Part B 
(c) Since the angular frequency ω and speed of propagation u are given, the wavelength  is 

given by λ = 2π / k with k = ω / u. The spatial variation of the displacement ξ is therefore 
described by 







 −+






 −=

2
cos

2
sin)( 21

bxkBbxkBxg                  (B1) 

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to 
B2 = 0. Given that the maximum of g(x) is 1, we have B1







 −±=

2
sin)( bx

u
xg ω

 = ±1 and 

                         (B2) 

Thus, the displacement is 

tbx
u

tx ωωξξ cos
2

sin2),( 0 





 −±=                   (B3) 

 
(d) Since the pressure p (or stress T ) must vanish at the end faces of the quartz slab (i.e., x = 0 

and x = b), the answer to this problem can be obtained, by analogy, from the resonant 
frequencies of sound waves in an open pipe of length b. However, given that the centers 
of the electrodes are stationary, all even harmonics of the fundamental tone must be 
excluded because they have antinodes, rather than nodes, of displacement at the bisection 
plane of the slab. 

Since the fundamental tone has a wavelength  λ = 2b, the fundamental frequency is 
given by )2/(1 buf = . The speed of propagation u is given by 

3
3

10
1045.5

1065.2
1087.7 ×=

×
×==

ρ
Yu m/s                 (B4) 

and, given that b =1.00×10-2

)kHz(273
21 ==
b

uf

 m, the two lowest standing wave frequencies are 

, )kHz(818
2
33 13 ===
b
uff           (B5) 

-------------------------------------------------------------------------------------------------------------- 
[Alternative solution to Problems (c) and (d)]: 

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It 
may be regarded as consisting of two waves traveling in opposite directions. Thus, its 
displacement and velocity must have the following form 

tbxk

utbxkutbxktx

m

m

ωξ

ξξ

cos
2

sin2

2
sin

2
sin),(







 −=















 +−+






 −−=

               (B6) 

tbxk

utbxkutbxkkutxv

m

m

ωωξ

ξ

sin
2

sin2

2
cos

2
cos),(







 −−=















 +−−






 −−−=

           (B7) 

where ω  = k u and the first and second factors in the square brackets represent waves 
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traveling along the +x and –x directions, respectively. Note that Eq. (B6) is identical to Eq. 
(B3) if we set ξ m = ±ξ 0

For a wave traveling along the –x direction, the velocity v must be replaced by –v in 
Eqs. (A1a) and (A1b) so that we have 

. 

u
vS −=  and uvp ρ=     (waves traveling along +x)       (B8) 

u
vS =   and uvp ρ−=    (waves traveling along –x)       (B9) 

As in Problem (b), the strain and pressure are therefore given by 

tbxkk

utbxkutbxkktxS

m

m

ωξ

ξ

cos
2

cos2

2
cos

2
cos),(







 −=















 +−−






 −−−−=

          (B10) 

tbxku

utbxkutbxkutxp

m

m

ωωξρ

ωξρ

cos
2

cos2

2
cos

2
cos),(







 −−=















 +−+






 −−−=

        (B11) 

Note that v, S, and p may also be obtained by differentiating ξ as in Problem (b). 
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all 

times because they are free. From Eq. (B11), this is possible only if 0)2/cos( =kb or 

,5,3,1,2
==== nnb

f
fb

u
kb π

λ
πω           (B12) 

In terms of wavelength λ, Eq. (B12) may be written as 

,5,3,1,2 == n
n
bλ .                     (B13) 

The frequency is given by 

,5,3,1,
22

==== nY
b
n

b
nuuf

ρλ
.          (B14) 

This is identical with the results given in Eqs. (B4) and (B5). 
-------------------------------------------------------------------------------------------------------------- 

 
(e) From Eqs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations 

)( EdSYT p−=                              (B15) 

E
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εσ

2
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Because x = b/2 must be a node of displacement for any longitudinal standing wave in the 
slab, the displacement ξ and strain S must have the form given in Eqs. (B6) and (B10), i.e., 
with ku=ω , 
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sin),( φωξξ +
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

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)cos(
2

cos),( φωξ +





 −= tbxkktxS m                   (B18) 

where a phase constant φ is now included in the time-dependent factors. 
By assumption, the electric field E between the electrodes is uniform and depends only 

on time: 

h
tV

h
tVtxE m ωcos)(),( ==                       (B19) 

Substituting Eqs. (B18) and (B19) into Eq. (B15), we have 
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The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they 
are free. This is possible only if φ  = 0 and 

h
Vdkbk m

pm =
2

cosξ                          (B21) 

Since φ  = 0, Eqs. (B16), (B18), and (B19) imply that the surface charge density must have 
the same dependence on time t and may be expressed as 

txtx ωσσ cos)(),( =                         (B22) 
with the dependence on x given by 
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            (B23) 

 
(f) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating 

),( txσ in Eq. (B22) over the surface of the electrode. The result is 
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where  

h
bwC Tε=0 ,   3
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06.427.1
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(The constant α is called the electromechanical coupling coefficient.) 
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Note: The result C 0 = ε T 

xx ≈tan
bw/ h can readily be seen by considering the static limit k = 0 

of Eq. (5) in the Question. Since  when x << 1, we have 

0
22

0
0

)]1([)(/)(lim CCtVtQ
k

=−+≈
→

αα                (B26) 

Evidently, the constant C 0 is the capacitance of the parallel-plate capacitor formed by the 
electrodes (of area bw) with the quartz slab (of thickness h and permittivity ε T) serving as 
the dielectric medium. It is therefore given by ε T bw / h. 
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Marking Scheme 
 

Theoretical Question 2 
A Piezoelectric Crystal Resonator under an Alternating Voltage 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

1.6 

The strain S and pressure p on the left face. 
 0.4 for |∆ℓ| = v∆t and ℓ = u∆t. 
 0.4 for S = -v/u.                    (0.1 for sign) 
 0.4 for relating p to S as p = −YS.      (0.1 for sign) 
 0.4 for p = ρu v .                    (0.1 for sign) 

(b) 
 

2.4 

The velocity v(x, t), strain S(x, t), and pressure p(x, t). 
 0.3×3 sinusoidal variation with correct phase constant. (0.2 for phase 

constant.) 
 0.3×3 for amplitude. 
 0.2×3 for dependence on x and t as (kx- ku t). 

Part B 
 

6.0 pts 

(c) 
 

1.2 

The function g(x) for a standing wave of angular frequency ω. 
 0.4 for g(b/2) = 0. 
 0.3+0.1 for B1=±1 (0.1 for both signs) 
 0.4 for B2 = 0  

(d) 
 

1.2 

The two lowest standing wave frequencies. 
 0.2 for wavelength of fundamental tone λ = 2b. 
 0.2 for excluding even harmonics. 
 (0.3+0.1) for f1 = u/2b = 273 kHz.      (0.1 for value) 
 (0.3+0.1) for f3 = 3u/2b = 818 kHz.     (0.1 for value) 

(e) 
 

2.2 

The surface charge density σ  as a function of x and t. 
 0.1×2 for ξ  and S, each a separable function of x and t. 
 0.1×2 for ξ and S, each depends on time as cos ω t with φ = 0. 
 0.3 for spatial part )2/(sin)( bxkx m −= ξξ . 
 0.3 for spatial part )2/(cos)( bxkkxS m −= ξ . 
 0.3 for YhVdbxkkxT mpm ]/)2/(cos[)( −−= ξ . 
 0.3 for hVdkbk mpm /)2/cos( =ξ . 
 0.6 for D1 (0.3) and D2 (0.3) in )(xσ . 

(f) 
 

1.4 

The constants C0 and 2α . 
 0.2 for relation between σ and Q as 

Q(t) = ( ∫
b dxwx0 )(σ ) cos ω t. 

 0.3 for noting Q(t)/V(t) ≈ C0 as k → 0. 
 0.4 for C0 = ε T bw / h. 
 0.4+0.1 for 322 1082.9/ −×== TpYd εα . (0.1 for value) 
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Solution toTheoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
 

(a) Let ),( 2
ee qcEc  , ),( 2

pp qcEc  , and ),( 2
vv qcEc  be the energy-momentum 4-vectors of the 

electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron. 
Notice that νν qqqEEE pepe

 ,,,,,  are all in units of mass. The proton and the anti-neutrino 

may be considered as forming a system of total rest mass cM , total energy cEc2 , and 
total momentum cqc . Thus, we have 

vpc EEE += ,     vpc qqq  += ,     222
ccc qEM −=           (A1) 

Note that the magnitude of the vector cq  is denoted as qc. The same convention also 
applies to all other vectors. 

Since energy and momentum are conserved in the neutron decay, we have 

nec mEE =+                              (A2) 

ec qq  −=                               (A3) 
When squared, the last equation leads to the following equality 

2222
eeec mEqq −==                           (A4) 

From Eq. (A4) and the third equality of Eq. (A1), we obtain 

2222
eecc mEME −=−                          (A5) 

With its second and third terms moved to the other side of the equality, Eq. (A5) may be 
divided by Eq. (A2) to give 

)(1 22
ec

n
ec mM

m
EE −=−                       (A6) 

As a system of coupled linear equations, Eqs. (A2) and (A6) may be solved to give 
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2

1 222
cen

n
c Mmm

m
E +−=                      (A7) 
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2

1 222
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n
e Mmm

m
E −+=                      (A8) 

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as 
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1 22222
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e

MmmMmmMmmMmm
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mmMmm
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q

−−+−−+++=

−−+=
    (A9) 

Eq. (A8) shows that a maximum of eE  corresponds to a minimum of 2
cM . Now the 

rest mass cM  is the total energy of the proton and anti-neutrino pair in their center of 

mass (or momentum) frame so that it achieves the minimum 
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( ) vpc mmMM +==min                       (A10) 

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence, 
from Eqs. (A8) and (A10), the maximum energy of the electron E = c2Ee is 

[ ] MeV29.1MeV292569.1)(
2

222
2

max ≈≈+−+= vpen
n

mmmm
m
cE      (A11) 

When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity vm 
of the center of mass and we have 
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      (A12) 

where the last equality follows from Eq. (A3). By Eqs. (A7) and (A9), the last expression 
in Eq. (A12) may be used to obtain the speed of the anti-neutrino when E = Emax. Thus, 
with M = mp+mv, we have 

00127.000126538.0
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     (A13) 

------------------------------------------------------------------------------------------------------ 
[Alternative Solution] 

Assume that, in the rest frame of the neutron, the electron comes out with momentum 

eqc  and energy c2Ee, the proton with pqc  and pEc2 , and the anti-neutrino with vqc  and 

vEc2 . With the magnitude of vector αq  denoted by the symbol qα, we have 

222
ppp qmE += ,   222

vvv qmE += ,   222
eee qmE +=             (1A) 

Conservation of energy and momentum in the neutron decay leads to 

envp EmEE −=+                            (2A) 

 evp qqq  −=+                              (3A) 

When squared, the last two equations lead to 

222 )(2 envpvp EmEEEE −=++                       (4A) 

22222 2 eeevpvp mEqqqqq −==⋅++                       (5A) 

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives 

enenvpvpvp EmmmqqEEmm 2)(2 2222 −+=⋅−++                (6A) 

or, equivalently, 
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)(22 2222
vpvpvpenen qqEEmmmmEm  ⋅−−−−+=                (7A) 

If θ  is the angle between pq  and vq , we have vpvpvp qqqqqq ≤=⋅ θcos  so that Eq. (7A) 
leads to the relation 

)(22 2222
vpvpvpenen qqEEmmmmEm −−−−+≤               (8A) 

Note that the equality in Eq. (8A) holds only if θ = 0, i.e., the energy of the electron c2Ee takes 
on its maximum value only when the anti-neutrino and the proton move in the same direction. 

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be 
pcβ  and vcβ , respectively. We then have ppp Eq β=  and vvv Eq β= . As shown in Fig. 

A1, we introduce the angle φ v ( 2/0 πφ <≤ v ) for the antineutrino by 

vvv mq φtan= ,   vvvvv mqmE φsec22 =+= ,   vvvv Eq φβ sin/ ==      (9A) 

 
 
 
 
 

Similarly, for the proton, we write, with 2/0 πφ <≤ p , 

ppp mq φtan= ,  ppppp mqmE φsec22 =+= ,  pppp Eq φβ sin/ ==    (10A) 

Eq. (8A) may then be expressed as 
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The factor in parentheses at the end of the last equation may be expressed as 
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   (12A) 

and clearly assumes its minimum possible value of 1 when φp = φ v, i.e., when the 
anti-neutrino and the proton move with the same velocity so that β p = β v. Thus, it follows 
from Eq. (11A) that the maximum value of Ee is 
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and the maximum energy of the electron E = c2Ee is 

MeV29.1MeV292569.1)( max
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max ≈≈= eEcE               (14A) 
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When the anti-neutrino and the proton move with the same velocity, we have, from Eqs. 
(9A), (10A), (2A) ,(3A), and (1A), the result 
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Substituting the result of Eq. (13A) into the last equation, the speed vm of the anti-neutrino 
when the electron attains its maximum value Emax is, with M = mp+mv, given by 
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------------------------------------------------------------------------------------------------------ 
Part B 

Light Levitation 
 

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and leads to 

tin θθ sinsin =                            (B1) 

Neglecting terms of the order (δ /R)3or higher in sine functions, Eq. (B1) becomes 
tin θθ ≈                               (B2) 

For the triangle ∆FAC in Fig. B1, we have 
 

iiiit nn θθθθθβ )1( −=−≈−=        (B3) 
 

Let 0f  be the frequency of the incident light. If pn  
is the number of photons incident on the plane surface per 
unit area per unit time, then the total number of photons 
incident on the plane surface per unit time is 2πδpn . The 
total power P of photons incident on the plane surface is 

))(( 0
2 hfn pπδ , with h being Planck’s constant. Hence, 

0
2hf
Pn p

πδ
=               (B4) 

The number of photons incident on an annular disk of 
inner radius r and outer radius r +dr on the plane surface 
per unit time is )2( rdrn p π , where ii RRr θθ ≈= tan . 

Therefore, 

iipp dRnrdrn θθππ )2()2( 2≈                        (B5) 

The z-component of the momentum carried away per unit time by these photons when 
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refracted at the spherical surface is 
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so that the z-component of the total momentum carried away per unit time is 
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where imim R
θδθ ≈=tan . Therefore, by the result of Eq. (B5), we have 
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The force of optical levitation is equal to the sum of the z-components of the forces exerted 
by the incident and refracted lights on the glass hemisphere and is given by 
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Equating this to the weight mg of the glass hemisphere, we obtain the minimum laser 
power required to levitate the hemisphere as 
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Marking Scheme 
 

Theoretical Question 3 
Neutrino Mass and Neutron Decay 

Total 
Scores 

Sub 
Scores Marking Scheme for Answers to the Problem 

Part A 
 

4.0 pts. 

(a) 
 

4.0 

The maximum energy of the electron and the corresponding speed of the 
anti-neutrino. 
 0.5 use energy-momentum conservation and can convert it into 

equations. 
 0.5 obtain an expression for eE  that allows the determination of its 

maximum value. 
 (0.5+0.2) for concluding that proton and anti-neutrino must move 

with the same velocity when eE  is maximum. (0.2 for the same 
direction) 

 0.6 for establishing the minimum value of )( vpvp qqEE 

⋅−  to be 

vpmm  or a conclusion equivalent to it. 
 (0.5+0.1) for expression and value of Emax. 

 0.5 for concluding )/(22
eneev EmmE −−=β . 

 (0.5+0.1) for expression and value of vm /c. 
 
 
 

Light Levitation 
Part B 

 
4.0 pts 

(b) 
 

4.0 

Laser power needed to balance the weight of the glass hemisphere. 
 0.3 for law of refraction tin θθ sinsin = . 
 0.3 for making the linear approximation tin θθ ≈ . 
 0.4 for relation between angles of deviation and incidence. 
 0.3 for photon energy ε = hν. 
 0.3 for photon momentum p = ε /c. 
 0.3 for momentum of incident photons per unit time = P/c. 
 0.6 for momentum of photons refracted per unit time as a function of 

the angle of incidence. 
 0.4 for total momentum of photons refracted per unit time = 

[1-(n-1)2δ 2/(4R2)]P/c. 
 0.4 for force of levitation = sum of forces exerted by incident and 

refracted photons. 
 0.4 for force of levitation = (n-1)2δ 2P/(4cR 2). 
 0.3 for the needed laser power P = 4mgcR 2/(n-1)2δ 2. 
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