Solution to Theoretical Question 1

A Swing with a Falling Weight

Part A

(a)

(b)

(©)

(d)

(€)

Since the length of the string L =s+ R@# is constant, its rate of change must be zero.
Hence we have

$+RO=0 (A1)
Relative to O, Q moves on a circle of radius R with angular velocity 8, so

V, =ROt =-st (A2)

Refer to Fig. Al. Relative to Q, the displacement of P in a time interval At
is AT’ =(sSA0)(—F) + (As)f =[(sO)(~T) + $E]At. It follows

V' =—sOf + st (A3)

Figure Al

The velocity of the particle relative to O is the sum of the two relative velocities given in
Egs. (A2) and (A3) so that

V=V'+V, = (-sOf +st)+ROT = —sOF (A4)

Refer to Fig. A2. The ( —t )-component of the velocity change AV is given
by (—f)- AV =vA@ =vOAt. Therefore, thet-component of the acceleration a=Av/At
is given by f.4=-v@ . Since the speed v of the particle is s@ according to Eq. (A4),
we see that the f-component of the particle’s acceleration at P is given by

a-f=-vo=—(s0)0=-s6° (A5)

P _f

Figure A2
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(f)

(9)

Note that, from Fig. A2, the radial component of the acceleration may also be obtained as
a-f=—dv/dt=-d(s6)/dt.

Refer to Fig. A3. The gravitational potential energy of the particle is given byU = —mgh.

It may be expressed in terms of sand & as
U (@) = —mg[R(1—cos ) + ssin ] (A6)

Figure A3
P

At the lowest point of its trajectory, the particle’s gravitational potential energy U must
assume its minimum value U,. By differentiating Eq. (A6) with respect to 6 and using

Eq. (Al), the angle &, corresponding to the minimum gravitational energy can be

obtained.
w_ —mg(Rsin8+£sin9+ scosej
dée déo
= —mg[Rsin @ + (-R)sin# + scos ]
=—mgscosé
At 6=26,_, ?j—l; =0. We haved, :%. The lowest point of the particle’s trajectory is
On

shown in Fig. A4 where the length of the string segment of QP is s = L— zR/2.

Figure A4

From Fig. A4 or Eq. (A6), the minimum potential energy is then

U, =U(z/2)=-mg[R+L - (7R /2)] (A7)
Initially, the total mechanical energy E is 0. Since E is conserved, the speed vy, of the
particle at the lowest point of its trajectory must satisfy
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E:O:%mv%+um (A8)

From Egs. (A7) and (A8), we obtain

Vin =+/—2U /m =/2g[R + (L - 7R/ 2)] (A9)
Part B
(h) From Eg. (A6), the total mechanical energy of the particle may be written as
E:Ozémvz+U(6):%mv2—mg[R(l—cose)+ssin9] (B1)

From Eq. (A4), the speed v is equal tos@ . Therefore, Eq. (B1) implies
vZ = (s6)? = 2g[R(L—c0s0) + s sind] (B2)

Let T be the tension in the string. Then, as Fig. B1 shows, thef -component of the net
force on the particle is —=T + mg sin 8. From Eq. (A5), the tangential acceleration of the

particle is (—392) . Thus, by Newton’s second law, we have
m(-s62) =T + mgsin® (B3)

x *
A

Figure B1

According to the last two equations, the tension may be expressed as
T =m(s6 %+ gsin @) = %[ZR(l—cose) +3ssin 6]

~ 2mgR 0

5

[tan %(e —%)](sin 0) (B4)

~ 2mgR
s

(y1—Y2)(sin®)

The functions y; =tan(@/2) and y, =3(¢—-L/R)/2 are plotted in Fig B2.
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] Figure B2
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at
which .y, =y is called &5(7 <685 <2x)and is given by

3 Ly .. 05
2(6?s R)—tan > (B5)
or, equivalently, by
L _p _2¢an%s
R =0, 3tan > (B6)
Since the ratio L/R is known to be given by
L 9 2 V4 7y 2.1 V4
S = +oCot=(z+ ) -Stan> (7 + 5 B7
R™ 8 +3cot16 (7r+8) 3tan2(7r+8) (B7)

one can readily see from the last two equations that 6, =97/8.

Table B1
(y1—-Y>) sing tension T
0<O0<rx positive positive positive
O=rx + © 0 positive
<6 <0y negative negative positive
0 =0, zero negative zZero
O, <0<2r positive negative negative

Table B1 shows that the tension T must be positive (or the string must be taut and straight)
in the angular range 0<@ < 6. Once @ reaches s, the tension T becomes zero and the
part of the string not in contact with the rod will not be straight afterwards. The shortest
possible value smin for the length s of the line segment QP therefore occurs at 6 = 6,and

is given by
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9z 2 97, 2R
- =L-RO. =R(E=+=cot——-"")=—cot— = 2R B
Smin (78 (8 3cot16 3 3 cot16 3.35 (B8)

When@ = 6, we have T = 0 and Egs. (B2) and (B3) then leads to v 2= —gs,;, sin g, .
Hence the speed v is

Vs = /= OSmin SIN b —\/—cot—s inZ = \/—co — (B9)
=1.133,/gR

(i) When @ > 6, the particle moves like a projectile under gravity. As shown in Fig. B3, it is
projected with an initial speed v from the position P =(Xg,ys) in a direction making
an angle ¢ = (37 /2 - 6,) with the y-axis.

The speed v, of the particle at the highest point of its parabolic trajectory is equal to the
y-component of its initial velocity when projected Thus,

Vy =Vgsin(@s — ) = 1} cos—sm—_ 0.4334,/gR (B10)

The horizontal distance H traveled by the partlcle from point P to the point of maximum
height is

2 . 2
200. —
_ Vg sin (05 — ) _ V—SSIHQTE — 0.4535R (B11)

29 29

Figure B3
The coordinates of the particle when @ = 6 are given by
Xs = Rc0SHs — S SINOs =—R cos gt Smin S 8 =0.358R (B12)
ys = Rsin 6 + S, €056 = —R sin%— Smin cos% = -3.478R (B13)

Evidently, we have | y;| > (R+ H) . Therefore the particle can indeed reach its maximum
height without striking the surface of the rod.
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Part C

() Assume the weight is initially lower than O by h as shown in Fig. C1.

Figure C1

When the weight has fallen a distance D and stopped, the law of conservation of total
mechanical energy as applied to the particle-weight pair as a system leads to

—Mgh=E'-Mg(h+ D) (C1)
where E’ is the total mechanical energy of the particle when the weight has stopped. It
follows

E’'=MgD (C2)

Let A be the total length of the string. Then, its value at &= 0 must be the same as at any
other angular displacement €. Thus we must have

A:L+%R+h:s+R(9+%)+(h+D) (C3)
Noting that D = « L and introducing ¢ = L—D, we may write
(=L-D=(1-a)L (C4)
From the last two equations, we obtain
s=L-D-RO#=(-RO (C5)

After the weight has stopped, the total mechanical energy of the particle must be
conserved. According to Eqg. (C2), we now have, instead of Eq. (B1), the following

equation:

E'= MgD:%mvz—mg[R(l—cosH)+ssin 6] (C6)
The square of the particle’s speed is accordingly given by

v2 = (s0)? :%+29R{(1—c050)+%sin 0} (C7)

Since Eq. (B3) stills applies, the tension T of the string is given by
—T +mgsing =m(-s6?) (C8)
From the last two equations, it follows
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T =m(s %+ gsin 6)

—g{—D+2R(1 cosH)+3ssm0} (C9)
s m

_ 2mgR —+(1 cos&)+3(£—t9jsin9

s | mR 2\R

where Eq. (C5) has been used to obtain the last equality.
We now introduce the function

£(0) =1—cos¢9+g(é—0)sin0 (C10)
From the fact/ = (L — D) >> R, we may write
£(6) z1+%ésin9—cos¢9 _ 1+ Asin(6 - ¢) (C11)

where we have introduced

N TERAY: 2R
A= l+(§ﬁ , ¢—tan (3£J (C12)

From Eq. (C11), the minimum value of f(6) is seen to be given by

foo1-A=1- |14 (”) (C13)
V2R

Since the tension T remains nonnegative as the particle swings around the rod, we have
from Eq. (C9) the inequality

2
@+fminzw+l_ 1+ % >0 (C14)
mR mR 2R

or

ML +1 > Mz + .1+
mR mR

2
o) ) e
2R mR 2R
From Eq. (C4), Eqg. (C15) may be written as

ML ML 3L
(ﬁ)“ ( R ZRJ(_ @) (¢19)

Neglecting terms of the order (R/L) or higher, the last inequality leads to

(MLjJrl 37L_1 1_5

mR 2R 3L 1
> - = I~
¢ ML 3L) ML 3L 2M 2M (C17)
—+ —+1 1+—
mR 2R mR 2R 3m 3m
The critical value for the ratio D/L is therefore
1
@ =—r (C18)
1+ —
3m
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Marking Scheme

Theoretical Question 1
A Swing with a Falling Weight

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A (@  |Relation between and §. ($=-R0)
> 0.2for focs.
43pts.| 0.5 |5 0.3 for proportionality constant (-R).
() |Velocity of Qrelativeto O. (v, = RéT)
0.5 |» 0.2 for magnitude RO.
» 0.3 for direction t .
(©) Particle’s velocity at P relative to Q. (V' =—s@Ff +$t)
0.7 » 0.2+0.1 for magnitude and direction of r-component.
' > 0.3+0.1 for magnitude and direction of f-component.
(()d; Particle’s velocity at P relativeto O. (V=V'+V, = —sOF)
' > 0.3 for vector addition of v' and v, .
» 0.2+0.2 for magnitude and direction of V.
(6)  |f-component of particle’s acceleration at P.
07 > 0.3forrelating a or a-t to the velocity in a way that implies
' |a-t|=Vv?/s.
> 0.4for a-f=-s6? (0.1 for minus sign.)
() Potential energy U.
» 0.2 for formula U =—-mgh.
0.5 » 0.3for h=R(@-cosd)+ssind orU as a function of 4, s, and R.
(9) Speed at lowest point vy,
» 0.2 for lowest pointat 8 =x/2 or U equals minimum Uy,
0.7 > 0.2 for total mechanical energy E =mv2/2+U, =0.
> 0.3for vy =-2U,/m=2g[R+(L-7R/2)].
PartB|  (h)  |particle’s speed vswhen QP is shortest.
4.3 pts. 24 > 0.4 for tension T becomes zero when QP is shortgst.
» 0.3 for equation of motion —T +mgsinéd = m(—sé’z) .
> 0.3for E=0=m(sd)?/2-mg[R(L—cosd)+ssind].
3 L 0
> 0. 2(fs —=) =tan—=.
0.4 for > (A R) tan >
>
>

0.5for 65, =97/8.
0.3+0.2 for vy =/4gR/3cosz /16 =1.133,/gR
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() The speed vy of the particle at its highest point.
» 0.4 for particle undergoes projectile motion when 8 > 6, .
1.9 »> 0.3 for angle of projection ¢ =(37/2-6;).
»> 0.3 for vy isthey-component of its velocity at 6 = 6.
» 0.4 for noting particle does not strike the surface of the rod.
» 0.3+0.2 for
Vi =+/4gR/3cos(x /16)sin( /8) = 0.4334./gR .
Part C ()  |Thecritical value «, of the ratio D/L.
0.4 for particle’s energy E'= MgD when the weight has stopped.
3.4 pts 3.4

VVVVYV V VYV

0.3for s=L-D-R&.

0.3 for E'=MgD =mv?/2-mg[R(L-cos8)+s sind].

0.3for —T +mgsing = m(-s6?).

0.3 for concluding T must not be negative.

0.6 for an inequality leading to the determination of the range of D/L.

0.6 for solving the inequality to give the range of « = D/L.
0.6 for o, =(1+2M/3m).
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Solution to Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Part A
(@) Refer to Figure Al. The left face of the rod moves a distance vAt while the pressure wave
travels a distance uAt with u = /Y / p . The strain at the left face is

S:A_é_—vAt_—v

= =" Al
l uAat u (Ala)
From Hooke’s law, the pressure at the left face is
p:—YS:Y%:puv (Alb)
| UAt |
| |
_P t=0
Figure Al P_[, P At/2
Pl P At

VAt

(b) The velocity v is related to the displacement & as in a simple harmonic motion (or a
uniform circular motion, as shown in Figure A2) of angular frequency @ = ku . Therefore,
IfE(x,t) =&y sink(x —ut), then

v(X,t) = —ku&y cosk(x —ut). (A2)
The strain and pressure are related to velocity as in Problem (a). Hence,

S(x,t) =—-v(x,t)/u=ké&ycosk(x—ut) (A3)

p(x,t) = puv(x,t) = —kpu?&, cosk(x —ut)

(Ad)
=-YS(x,t) = —kY&y cosk(x —ut)

Alternatively, the answers may be obtained by differentiations:

v(x,t) = 4 =—kué, cosk(x—ut),

At
S(x,t) = % = k&, cosk(x—ut), Figure A2
(x t)——YA———kY§ cosk(x —ut)
v 0 '




Part B

(c) Since the angular frequency @ and speed of propagation u are given, the wavelength is
given by A =2z / k with k = @/ u. The spatial variation of the displacement &is therefore
described by

g(x) =B, sin k(x—ngr B, cosk(x—gj (B1)

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This leads to
B, = 0. Given that the maximum of g(x) is 1, we have B; = +1 and

g(x) = isin%(x —g) (B2)
Thus, the displacement is

E(x,t) = £2&, sin%[x—gjcoswt (B3)

(d) Since the pressure p (or stress T) must vanish at the end faces of the quartz slab (i.e., x =0
and x = b), the answer to this problem can be obtained, by analogy, from the resonant
frequencies of sound waves in an open pipe of length b. However, given that the centers
of the electrodes are stationary, all even harmonics of the fundamental tone must be
excluded because they have antinodes, rather than nodes, of displacement at the bisection
plane of the slab.

Since the fundamental tone has a wavelength A= 2b, the fundamental frequency is
given by f; =u/(2b). The speed of propagation u is given by

10
u= \ﬁ - M =5.45x10% m/s (B4)
Y 2.65x10
and, given that b =1.00x102 m, the two lowest standing wave frequencies are
u 3u
f, = e 273 (kHz), fy=3f, = 5= 818 (kHz) (BS)

[Alternative solution to Problems (c) and (d)]:

A longitudinal standing wave in the quartz slab has a displacement node at x = b/2. It
may be regarded as consisting of two waves traveling in opposite directions. Thus, its
displacement and velocity must have the following form

E(x,t)=¢&, [sin k(x —g— utj +sin k(x —g-i- utﬂ

=2&, sin k(x —g) cosawt

v(x,t) =—-ku&, {cos k(x —g— utj —C0S k(x —g-i- utﬂ

=—-2w&, sin k(x —g)sin ot

(B6)

(B7)

where @ = ku and the first and second factors in the square brackets represent waves
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traveling along the +x and —x directions, respectively. Note that Eq. (B6) is identical to Eq.
(B3) if we set &y = =&

For a wave traveling along the —x direction, the velocity v must be replaced by —v in
Egs. (Ala) and (Alb) so that we have

S = _TV and p=puv (waves traveling along +x) (B8)

S :% and p=-puv  (waves traveling along —x) (B9)

As in Problem (b), the strain and pressure are therefore given by

S(x,t) =-k¢&, {— cos k(x —g— ut) —C0S k(x —g+ utﬂ

(B10)
= 2k&,, cos k(x —g) coswt

p(x,t)=—p Ua);{cos k(x —g— ut) + C0S k(x —g+ utﬂ
(B11)

=-2pUuwé, cos k(x —gj coswt

Note that v, S, and p may also be obtained by differentiating & as in Problem (b).
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the slab at all
times because they are free. From Eq. (B11), this is possible only if cos(kb/2) =0or
27f

_On_ -
kb = . b g b=nr, n=135, (B12)
In terms of wavelength 4, Eq. (B12) may be written as
z:z—nb, N=135,-. (B13)
The frequency is given by
_u_nu_n J¥ -
TR n=135,:--. (B14)

This is identical with the results given in Egs. (B4) and (B5).

(e) From Eqgs. (5a) and (5b) in the Question, the piezoelectric effect leads to the equations
T=Y(S-d,E) (B15)

d 2

aszpS+gT[1—Y —ij (B16)
&r

Because x = b/2 must be a node of displacement for any longitudinal standing wave in the

slab, the displacement &and strain S must have the form given in Egs. (B6) and (B10), i.e.,
with o =ku,

E(x,t)=¢&, sin k(x—gjcos(wt+¢) (B17)
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S(x,t) =k&, cos k(x - g) cos(at + @) (B18)

where a phase constant ¢ is now included in the time-dependent factors.
By assumption, the electric field E between the electrodes is uniform and depends only

on time:

V() Vpycosot

E(xt) = > : (B19)
Substituting Egs. (B18) and (B19) into Eq. (B15), we have
d
T :Y{kgm cos k(x—gj cos(awt + @) —T"Vm coswt} (B20)

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times because they
are free. This is possible only if ¢ =0 and

kb V
k& cos—=d -1 B21
§no0s—-=d, = (B21)

Since ¢ =0, Egs. (B16), (B18), and (B19) imply that the surface charge density must have
the same dependence on time t and may be expressed as

o(x,t) =o(x)cosmt (B22)
with the dependence on x given by

d2
U(X)=dek§mcosk[x—9j+g{1_y_p]v_m
2 & | h
d2 d2 (823)
=Y pkb cosk(x—9)+g{1_y_pJ Vin
cos? 2 g )| h

(F) At time t, the total surface charge Q(t) on the lower electrode is obtained by integrating
o(x,t)in Eq. (B22) over the surface of the electrode. The result is

wzi IDa(x,t)wdx:ij‘ba(x)wdx
V(D) V() V_ o
d? d?
=ﬂj‘b Iy —- cosk(x—9)+gT(1—Y—”)]dx
hio ™ cos k2 2 &
2 (B24)
d’ d’
=(8T b—WjY—pﬂitan@j+ 1-y—*%
h & \ kb 2 &
=C, Z(Etan@jﬂl—az
kb 2
where
d2 2 -2
Congb—W, g? =y o L 220 X107 405 103 (B25)
h & 1.27x4.06

(The constant « is called the electromechanical coupling coefficient.)
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Note: The result C o= &1 bw/h can readily be seen by considering the static limitk =0
of Eq. (5) in the Question. Sincetan X ~ X when x << 1, we have

klimOQ(t)/V(t) ~Cola® +(1-a?)]=C, (B26)

Evidently, the constant C, is the capacitance of the parallel-plate capacitor formed by the
electrodes (of area bw) with the quartz slab (of thickness h and permittivity £7) serving as
the dielectric medium. It is therefore given by £+ bw/h.
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Marking Scheme

Theoretical Question 2

A Piezoelectric Crystal Resonator under an Alternating Voltage

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A @) The strain S and pressure p on the left face.
» 0.4 for |A¢f| = vAtand ¢ = uAt.
4.0 pts. 1.6 » 0.4 for S =-vlu. (0.1 br 49gn)
» 0.4 forrelatingp to Sas p=-YS. (0.1 for sign)
> 0.4 forp=puv. (0.1 for sign)
(b) The velocity v(x, t), strain S(x, t), and pressure p(x, t).
» 0.3x3 sinusoidal variation with correct phase constant. (0.2 for phase
2.4 constant.)
» 0.3x3 for amplitude.
> 0.2x3 for dependence on x and t as (kx- ku t).
Part B () The function g(x) for a standing wave of angular frequency w.
> 0.4 for g(b/2) = 0.
6.0pts| 12 |» 0.3+0.1 for By==1 (0.1 for both signs)
» 04forB,=0
(d) The two lowest standing wave frequencies.
» 0.2 for wavelength of fundamental tone 4 = 2b.
1.2 » 0.2 for excluding even harmonics.
» (0.3+0.1) for f; = u/2b = 273 kHz. (0.1 for value)
» (0.3+0.1) for f3 = 3u/2b = 818 kHz. (0.1 for value)
(e) The surface charge density o as a function of x and t.
» 0.1x2 for £ and S, each a separable function of x and t.
2.2 |» 0.1x2for £and S, each depends on time as cos wt with ¢ = 0.
» 0.3 for spatial part &£(x) =&, sink(x—b/2).
» 0.3 for spatial part S(x) =ké&,, cosk(x—b/2).
> 03for T(x)=[ké,cosk(x—b/2)—-dV, /h]Y.
» 03for k&, cos(kb/2)=dV,/h.
» 0.6 for Dy (0.3) and D; (0.3) ino(x) .
() |The constants Co and 2.
14 » 0.2 for relation between oand Q as

QM = (] o (x)wdx) cos wt.

» 0.3 for noting Q(t)/V(t) ~ Cpask — 0.
» 0.4 for Cy=erbw/h.
» 0.4+0.1for o® =Yd} /& =9.82%x107°. (0.1 for value)
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Solution toTheoretical Question 3
Part A
Neutrino Mass and Neutron Decay

(a) Let (c’E,,cq,), (c*E,.cd,),and (c’E,,cq,)be the energy-momentum 4-vectors of the

electron, the proton, and the anti-neutrino, respectively, in the rest frame of the neutron.
Notice thatE,,E,E,,q,,q,,q, are all in units of mass. The proton and the anti-neutrino

may be considered as forming a system of total rest mass M., total energy CZEC, and
total momentum cq. Thus, we have

EczEp+Ev' d. =d, +0,, MCZZECZ_qg (A1)

Note that the magnitude of the vector ¢, is denoted as g.. The same convention also
applies to all other vectors.

Since energy and momentum are conserved in the neutron decay, we have
E.+E. =m, (A2)
qc = _qe (A3)
When squared, the last equation leads to the following equality
dc =0 =E¢ -m; (A4)
From Eq. (A4) and the third equality of Eq. (A1), we obtain
ES-M¢ =E{-mi (A5)

With its second and third terms moved to the other side of the equality, Eq. (A5) may be
divided by Eq. (A2) to give

1
Ec —Ee =——(M¢ -m;) (A6)
n
As a system of coupled linear equations, Egs. (A2) and (A6) may be solved to give
1
E =m(m§—m§+M§) (A7)
1
Ee = oo (M M6 ~ M) (A8)

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as

1
2m,

Je = \/(mr21+meZ_Mcz)2_(2mnme)2

(A9)

1
= om \/(mn +me+M c)(mn +Mg -M c)(mn —Me +M c)(mn — Mg -M c)
n

Eq. (A8) shows that a maximum of E, corresponds to a minimum ofMCz. Now the
rest mass M. is the total energy of the proton and anti-neutrino pair in their center of

mass (or momentum) frame so that it achieves the minimum
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(M) =M =m, +m, (A10)

when the proton and the anti-neutrino are both at rest in the center of mass frame. Hence,
from Egs. (A8) and (A10), the maximum energy of the electron E = ¢°E; is

2
Emax = %[mﬁ +m2—(m, +m,)2|~1.292560 Mev ~1.29Mev  (ALD)
n

When Eq. (A10) holds, the proton and the anti-neutrino move with the same velocity vy,
of the center of mass and we have

v_m:(q_vJ :(q_p] :(q_cj :(q_eJ (AL2)
c EV E=Enax Ep E=E EC E=E EC M¢=m,+m,

where the last equality follows from Eg. (A3). By Egs. (A7) and (A9), the last expression
in Eq. (A12) may be used to obtain the speed of the anti-neutrino when E = Epax. Thus,
with M = my+m,, we have

v_m_\/(mn+me+M)(mn+me—M)(mn—me+M)(mn—me—M)
c m2 —mZ2 +M 2 (A13)

~ 0.00126538 ~ 0.00127

[Alternative Solution]

Assume that, in the rest frame of the neutron, the electron comes out with momentum
cq, and energy c’Ee, the proton with cqg, and czEp, and the anti-neutrino with cg, and

cZEV . With the magnitude of vector g, denoted by the symbol q,, we have

E2

c=mi+qy,  Ej=mi+qf, EF=mi+ql (1A)

Conservation of energy and momentum in the neutron decay leads to

E,+E, =m, —E, (2A)

d, +d, = -0, (3A)
When squared, the last two equations lead to
E5+EJ +2E,E, =(m, - E)? (4A)
Op +0y +20, -G, =0 =E; —m; (5A)
Subtracting Eg. (5A) from Eqg. (4A) and making use of Eq. (1A) then gives
m> +m; +2(E E, —q,-q,) =m; +m —2m E, (6A)

or, equivalently,
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2m.E, =m +m; —m? —m; —2(E E, —q, -q,)

(7A)

If ¢ is the angle between q, and q,, we haveq, -q, =q,q, cosd < q,q, so that Eq. (7A)

leads to the relation

2m,E, < m2 +m§ —mf) —m? —-2(E,E, —q,0y)

(8A)

Note that the equality in Eq. (8A) holds only if 8= 0, i.e., the energy of the electron cE; takes
on its maximum value only when the anti-neutrino and the proton move in the same direction.

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron be
cf, and cp,, respectively. We then have q, = B,E, and g, = B E,. As shown in Fig.

Al, we introduce the angle ¢, (0 < ¢, < z/2) for the antineutrino by

qumvtan¢v' Ev=‘\lm5+q3:mvsec¢v' ﬂvZQV/Ev=Sin¢v

Ev
Qv

o Figure Al

my
Similarly, for the proton, we write, with 0<g¢, <7/2,

Gp=Mptang,, E,=mi+q5=m,secd,, B,=0d,/E,=sing,
Eq. (BA) may then be expressed as

2mE, <m?+m-m; —-m; —2mpmv(

1-sing, sin ¢VJ

COS ¢, COS @,

The factor in parentheses at the end of the last equation may be expressed as

1-sing,sing, 1-—sing,sing, —cosg, cosd, 1-cos(¢p, —¢y)
OS¢y, COSH, COS ¢, COS ¢, ~ COSgp, COSgy

+1>1

(9A)

(10A)

(11A)

(12A)

and clearly assumes its minimum possible value of 1 when ¢, = ¢, i.e., when the
anti-neutrino and the proton move with the same velocity so that g, = £y. Thus, it follows

from Eq. (11A) that the maximum value of E. is

1 2 2 2 2
(Ee)max :H(mn +m, _mp —-m, _2mpmv)

n

:ﬁ[mﬁ +mZ —(m, +mv)2]

and the maximum energy of the electron E = ¢’E, is

Ernax = C2(Ee) max ~1.292569 MeV ~1.29 MeV
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When the anti-neutrino and the proton move with the same velocity, we have, from Egs.
(9A), (10A), (2A) ,(3A), and (1A), the result

2 2
v PTE,TE, Ep+E, m,-E m,-E

(15A)
Substituting the result of Eqg. (13A) into the last equation, the speed vn, of the anti-neutrino
when the electron attains its maximum value Emay is, with M = my+m,, given by

Vim

Yo gy VB —mE (my £ -M)° —dmim
¢ TVIME T my — (Ee) max

2mZ —(m2 +mZ -M?2)
:\/(mn+me+M)(mn+me_M)(mn_me+M)(mn_me_M)

(16A)
mﬁ - mg +M?
~ 0.00126538 ~ 0.00127

Light Levitation

(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and leads to
nsing; =sin & (B1)
Neglecting terms of the order (5/R)or higher in sine functions, Eq. (B1) becomes

For the triangle AFAC in Fig. B1, we have

(B2)
z -~
B =0, -6, ~nf; - ; =(n-1)6 (B3) E
Let f, be the frequency of the incident light. If n,
is the number of photons incident on the plane surface per 6t
unit area per unit time, then the total number of photons [ B
incident on the plane surface per unit time is np7z52. The A\“
total power P of photons incident on the plane surface is \ 6
(npﬂ52)(hfo), with h being Planck’s constant. Hence, '
P S n
n, = (B4) -‘\
P 25%hf, 0\
C
The number of photons incident on an annular disk of 1
: : . o
inner radius r and outer radius r +dr on the plane surface
per unit time is n,(2zrdr), where r=Rtan¢; ~R6;. _
Fig. B1
Therefore,

n, (2zrdr) = n, (27R*)6;d6;

(B5)
The z-component of the momentum carried away per unit time by these photons when
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refracted at the spherical surface is

ﬂZ
dF, = ~Nn —(27zR )[1 5 j@idei
hf 1) (B9)
znV—QQdV{@—jﬂil—aﬂdQ
c 2
so that the z-component of the total momentum carried away per unit time is
_1\2
F, = 22R’n (hf jj [ei_ﬁﬂ__ll_eﬁ}dg
c )% 2
hf, (n-1)° (87
— 7R™ z|1-N"2) g
p[ C j |: 4 |m:|
where tané;, = % = 6;, . Therefore, by the result of Eq. (B5), we have
2 2 _1N\2 g2 _1N\2 g2
o niR’ZP(ﬁlé_z 1_(n 1)25 _P 1_(n 1)25 (B8)
mohf, L ¢ JR 4R c 4R

The force of optical levitation is equal to the sum of the z-components of the forces exerted
by the incident and refracted lights on the glass hemisphere and is given by

SRy P[l_(n_l)zy}:(n—l)zﬁzi (B9)

C 4R? 4R* ¢

Equating this to the weight mg of the glass hemisphere, we obtain the minimum laser
power required to levitate the hemisphere as

3 4mgcR?

_ _ B10
(n-1)252 (B0
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Marking Scheme

Theoretical Question 3
Neutrino Mass and Neutron Decay

Total Sub Marking Scheme for Answers to the Problem
Scores | Scores
Part A @) The maximum energy of the electron and the corresponding speed of the
anti-neutrino.
4.0 pts. 4.0 » 0.5 use energy-momentum conservation and can convert it into
equations.

> 0.5 obtain an expression for E, that allows the determination of its
maximum value.

» (0.5+0.2) for concluding that proton and anti-neutrino must move
with the same velocity when E, is maximum. (0.2 for the same
direction)

> 0.6 for establishing the minimum value of (E,E, —q,-qy) tobe
m,m, oraconclusion equivalent to it.

» (0.5+0.1) for expression and value of Enax.

» 0.5 for concluding g, = w/Ee2 - mf I(m, —Eg).

> (0.5+0.1) for expression and value of vy /c.

Light Levitation
Part B (b) Laser power needed to balance the weight of the glass hemisphere.
> 0.3 for law of refraction nsiné; =siné;.
4.0 pts 4.0 » 0.3 for making the linear approximation né; ~ 6 .
i ¥ 0t

> 0.4 for relation between angles of deviation and incidence.

» 0.3 for photon energy ¢= hv.

» 0.3 for photon momentum p = ¢/c.

» 0.3 for momentum of incident photons per unit time = P/c.

» 0.6 for momentum of photons refracted per unit time as a function of
the angle of incidence.

» 0.4 for total momentum of photons refracted per unit time =

[1-(n-1)*5°/(4R%)]PIc.

» 0.4 for force of levitation = sum of forces exerted by incident and
refracted photons.

> 0.4 for force of levitation = (n-1)>52P/(4cR?).

> 0.3 for the needed laser power P = 4mgcR %/(n-1)>52.
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