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Th 1     AN ILL FATED SATELLITE 
 
 

The most frequent orbital manoeuvres performed by spacecraft 
consist of velocity variations along the direction of flight, namely 
accelerations to reach higher orbits or brakings done to initiate re-entering in 
the atmosphere. In this problem we will study the orbital variations when the 
engine thrust is applied in a radial direction.  

To obtain numerical values use: Earth radius m10376 6⋅= .RT , 
Earth surface gravity 2m/s819.g = , and take the length of the sidereal day 
to be h0240 .T = . 

We consider a geosynchronous1 communications satellite of mass m 
placed in an equatorial circular orbit of radius 0r . These satellites have an 
“apogee engine” which provides the tangential thrusts needed to reach the 
final orbit. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

Question 1 

1.1 (0.3) Compute the numerical value of 0r . 

1.2 (0.3+0.1) Give the analytical expression of the velocity 0v  of the satellite as a function of g, TR , and 0r , and 
calculate its numerical value. 

1.3 (0.4+0.4) Obtain the expressions of its angular momentum 0L  and mechanical energy 0E , as functions of 0v , m, g 
and TR . 

Once this geosynchronous circular orbit has been reached (see Figure F-1), the satellite 
has been stabilised in the desired location, and is being readied to do its work, an error by the 
ground controllers causes the apogee engine to be fired again. The thrust happens to be 
directed towards the Earth and, despite the quick reaction of the ground crew to shut the 
engine off, an unwanted velocity variation v∆  is imparted on the satellite. We characterize 
this boost by the parameter 0v/v∆β = . The duration of the engine burn is always negligible 
with respect to any other orbital times, so that it can be considered as instantaneous.  

 
Question 2 

Suppose 1<β . 

2.1 (0.4+0.5) Determine the parameters of the new orbit2, semi-latus-rectum l  and eccentricity ε , in terms of 0r  and β.  

2.2 (1.0) Calculate the angle α between the major axis of the new orbit and the position vector at the accidental misfire. 

2.3 (1.0+0.2) Give the analytical expressions of the perigee minr  and apogee maxr  distances to the Earth centre, as 
functions of 0r  and β , and calculate their numerical values for 4/1=β . 

2.4 (0.5+0.2) Determine the period of the new orbit, T, as a function of 0T  and β, and calculate its numerical value for 
4/1=β . 

                                                           
1 Its revolution period is 0T . 
2 See the “hint”. 

Image: ESA 
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Question 3 

3.1 (0.5) Calculate the minimum boost parameter, escβ , needed for the satellite to escape Earth gravity. 

3.2 (1.0) Determine in this case the closest approach of the satellite to the Earth centre in the new trajectory, minr ′ , as a 
function of 0r . 

 

Question 4 

Suppose escββ > . 

4.1 (1.0) Determine the residual velocity at the infinity, ∞v , as a function of 0v  
and β. 

4.2 (1.0) Obtain the “impact parameter” b of the asymptotic escape direction in 
terms of 0r and β. (See Figure F-2). 

4.3 (1.0+0.2) Determine the angle φ  of the asymptotic escape direction in terms of 

β. Calculate its numerical value for escββ
2
3

=  . 

 

 

 

 

HINT 

 

Under the action of central forces obeying the inverse-square law, bodies follow 

trajectories described by ellipses, parabolas or hyperbolas. In the approximation m << M 

the gravitating mass M is at one of the focuses. Taking the origin at this focus, the general 

polar equation of these curves can be written as (see Figure F-3) 
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where l is a positive constant named the semi-latus-rectum and ε  is the eccentricity of the 

curve. In terms of constants of motion: 
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where G is the Newton constant, L is the modulus of the angular momentum of the orbiting mass, with respect to the origin, and E is its  

mechanical energy, with zero potential energy at infinity. 

 
We may have the following cases: 

 
i) If 10 <≤ ε , the  curve is an ellipse (circumference for 0=ε ).  

ii) If 1=ε , the curve is a parabola. 

iii) If 1>ε , the curve is a hyperbola.  
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Question Basic formulas and 
ideas used 

Analytical results Numerical results Marking 
guideline 
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2.4  =T  =T  0.7 

3.1   =escβ  0.5 

3.2  =′minr   1.0 

4.1  =∞v   1.0 

4.2  =b   1.0 

4.3  =φ  =φ  1.2 
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES 

 
The technological and scientific transformations underwent during the XIX century produced a compelling need of 

universally accepted standards for the electrical quantities. It was thought the new absolute units should only rely on the 
standards of length, mass and time established after the French Revolution. An intensive experimental work to settle the 
values of these units was developed from 1861 until 1912. We propose here three case studies. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 
  
Determination of the ohm (Kelvin) 

A closed circular coil of N turns, radius a and total resistance R is rotated with 
uniform angular velocity ω about a vertical diameter in a horizontal magnetic 

field iBB
rr

00 = . 

1. (0.5+1.0) Compute the electromotive force ε induced in the coil, and also the 

mean power1 P  required for maintaining the coil in motion. Neglect the coil 

self inductance. 

A small magnetic needle is placed at the center of the coil, as shown in Figure F-1. It 
is free to turn slowly around the Z axis in a horizontal plane, but it cannot follow the rapid 
rotation of the coil. 

2. (2.0) Once the stationary regime is reached, the needle will set at a direction making a small angle θ with 0B
r

. 

Compute the resistance R of the coil in terms of this angle and the other parameters of the system. 

Lord Kelvin used this method in the 1860s to set the absolute standard for the ohm. To avoid the rotating coil, 
Lorenz devised an alternative method used by Lord Rayleigh and Ms. Sidgwick, that we analyze in the next paragraphs. 

 

Determination of the ohm (Rayleigh, Sidgwick). 

The experimental setup is shown in Figure   
F-2. It consists of two identical metal disks D and D' 
of radius b mounted on the conducting shaft SS'. A 
motor rotates the set at an angular velocity ω , which 
can be adjusted for measuring R. Two identical coils 
C and C' (of radius a and with N turns each) 
surround the disks. They are connected in such a 
form that the current I flows through them in 
opposite directions. The whole apparatus serves to 
measure the resistance R.  

 

                                                 
1 The mean value X  of a quantity ( )tX  in a periodic system of period T is  ( )∫=

T
dttX

T
X
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You may need one or more of these integrals: 
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3.  (2.0) Assume that the current I flowing through the coils C and C' creates a uniform magnetic field B around D 
and D', equal to the one at the centre of the coil. Compute1 the electromotive force ε induced between the rims 1 
and 4, assuming that the distance between the coils is much larger than the radius of the coils and that a >> b. 

The disks are connected to the circuit by brush contacts at their rims 1 and 4. The galvanometer G detects the flow 
of current through the circuit 1-2-3-4. 

4.  (0.5) The resistance R is measured when G reads zero. Give R in terms of the physical parameters of the system.  

Determination of the ampere 

Passing a current through two conductors and measuring the force between them provides an absolute determination 
of the current itself. The “Current Balance” designed by Lord Kelvin in 1882 exploits this method. It consists of six 
identical single turn coils C1… C6 of radius a, connected in series. As shown in Figure F-3, the fixed coils C1, C3, C4, and 
C6 are on two horizontal planes separated by a small distance 2h. The coils C2 and C5 are carried on balance arms of length 
d, and they are, in equilibrium, equidistant from both planes.  

The current I flows through the various coils in such a direction that the magnetic force on C2 is upwards while that 
on C5 is downwards. A mass m at a distance x from the fulcrum O is required to restore the balance to the equilibrium 
position described above when the current flows through the circuit. 

5. (1.0) Compute the force F on C2 due to the magnetic interaction with C1. For simplicity assume that the force per 
unit length is the one corresponding to two long, straight wires carrying parallel currents.  

6. (1.0) The current I is measured when the balance is in equilibrium. Give the value of I in terms of the physical 
parameters of the system. The dimensions of the apparatus are such that we can neglect the mutual effects of the 
coils on the left and on the right. 

Let M   be the mass of the balance (except for m and the hanging parts), G its centre of mass and l the distance .OG  

7. (2.0) The balance equilibrium is stable against deviations producing small changes zδ  in the height of C2 and 
zδ−  in C5. Compute2 the maximum value maxzδ  so that the balance still returns towards the equilibrium 

position when it is released. 
 

                                                 
2 Consider that the coils centres remain approximately aligned.  

Use the approximations  21
1

1
ββ

β
+≈

±
m   or 2

2
1

1

1
β

β
m≈

±
  for  1<<β , and θθ tansin ≈  for small θ. 

x 
m 

d 

C1 

C2 

C3 

h 

h F

FF 

F 

d 

O 

G 

C6 

C5 

C4 

l 

F-3 

I 



36th International Physics Olympiad. Salamanca (España) 2005 
 

Th 2   Page 3 of 3 
 

R.S.E.F. 

COUNTRY CODE STUDENT CODE PAGE NUMBER TOTAL No OF PAGES 
    

 
 

Th 2     ANSWER SHEET 
 
 

Question Basic formulas used Analytical results Marking 
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Th 3     NEUTRONS IN A GRAVITATIONAL FIELD 

 
In the familiar classical world, an elastic bouncing ball on the Earth’s surface is an ideal example for perpetual 

motion. The ball is trapped: it can not go below the surface or above its turning point. It will remain bounded in this state, 
turning down and bouncing up once and again, forever. Only air drag or inelastic bounces could stop the process and will 
be ignored in the following. 

A group of physicists from the Institute Laue - Langevin in Grenoble reported1 in 2002 experimental evidence on 
the behaviour of neutrons in the gravitational field of the Earth. In the experiment, neutrons moving to the right were 
allowed to fall towards a horizontal crystal surface acting as a neutron mirror, where they bounced back elastically up to the 
initial height once and again.  

The setup of the experiment is sketched in Figure F-1. It consists of the opening W, the neutron mirror M (at height 
z = 0), the neutron absorber A (at height z = H and with length L) and the neutron detector D. The beam of neutrons flies 
with constant horizontal velocity component vx from W to D through the cavity between A and M. All the neutrons that 
reach the surface of A are absorbed and disappear from the experiment. Those that reach the surface of M are reflected 
elastically. The detector D counts the transmission rate N(H), that is, the total number of neutrons that reach D per unit 
time. 

Marks are indicated at the beginning of each subquestion, in parenthesis. 

 

The neutrons enter the cavity with a wide range of positive and negative vertical velocities, vz. Once in the cavity, 
they fly between the mirror below and the absorber above.  

1. (1.5) Compute classically the range of vertical velocities vz(z) of the neutrons that, entering at a height z, can 
arrive at the detector D. Assume that L is much larger than any other length in the problem. 

2. (1.5) Calculate classically the minimum length Lc of the cavity to ensure that all neutrons outside the 
previous velocity range, regardless of the values of z, are absorbed by A. Use vx = 10 m s-1 and H = 50 µm. 

The neutron transmission rate N(H) is measured at D. We expect that it increases monotonically with H.       

3. (2.5) Compute the classical rate Nc(H) assuming that neutrons arrive at the cavity with vertical velocity vz 
and at height z, being all the values of vz and z equally probable. Give the answer in terms of ρ, the constant 
number of neutrons per unit time, per unit vertical velocity, per unit height, that enter the cavity with vertical 
velocity vz and at height z. 

 

                                                 
1  V. V. Nesvizhevsky et al.  “Quantum states of neutrons in the Earth’s gravitational field.” Nature,  415 (2002) 297. Phys Rev D 67, 

102002 (2003). 
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The experimental results obtained by the Grenoble group 

disagree with the above classical predictions, showing instead that the 
value of N(H) experiences sharp increases when H crosses some 
critical heights H1, H2 … (Figure F-2 shows a sketch). In other words, 
the experiment showed that the vertical motion of neutrons bouncing 
on the mirror is quantized. In the language that Bohr and Sommerfeld 
used to obtain the energy levels of the hydrogen atom, this can be 
written as: “The action S of these neutrons along the vertical direction 
is an integer multiple of the Planck action constant h”. Here S is given 
by 

∫ === ...3,2,1,)( nhndzzpS z             (Bohr-Sommerfeld quantization rule) 

where pz is the vertical component of the classical momentum, and the integral covers a whole bouncing cycle. Only 
neutrons with these values of S are allowed in the cavity. 

4. (2.5) Compute the turning heights Hn and energy levels En (associated to the vertical motion) using the 
Bohr-Sommerfeld quantization condition. Give the numerical result for H1 in µm and for E1 in eV.  

The uniform initial distribution ρ of neutrons at the entrance changes, during the flight through a long cavity, into 
the step-like distribution detected at D (see Figure F-2).  From now on, we consider for simplicity the case of a long cavity 
with H < H2. Classically, all neutrons with energies in the range considered in question 1 were allowed through it, while 
quantum mechanically only neutrons in the energy level E1 are permitted. According to the time-energy Heisenberg 
uncertainty principle, this reshuffling requires a minimum time of flight. The uncertainty of the vertical motion energy will 
be significant if the cavity length is small. This phenomenon will give rise to the widening of the energy levels. 

5. (2.0) Estimate the minimum time of flight tq and the minimum length Lq of the cavity needed to observe the 
first sharp increase in the number of neutrons at D. Use vx = 10 m s-1. 

 

Data: 

Planck action constant      s J 10 6.63  -34⋅=h  
Speed of light in vacuum  -18 s m 10  3.00  ⋅=c  
Elementary charge  C 10  1.60 -19⋅=e  
Neutron mass   kg 10  1.67  -27⋅=M  
Acceleration of gravity on Earth g = 9.81 m s-2 

  If necessary, use the expression: ( ) ( )
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