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Th1     AN ILL FATED SATELLITE 

SOLUTION 
 

1.1 and 1.2 
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2.1  

 The value of the semi-latus-rectum l is obtained taking into account that the orbital angular momentum is the same 
in both orbits. That is 
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 The eccentricity value is 
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where E is the new satellite mechanical energy 
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Combining both, one gets    βε =  

 This is an elliptical trajectory because 1<= βε . 
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2.2 

 The initial and final orbits cross at P, where the satellite engine fired instantaneously (see Figure 4). At this point 
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 From the trajectory expression one immediately obtains that 
the maximum and minimum values of r correspond to 0=θ  and  

πθ =  respectively (see Figure 4).  Hence, they are given by 
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 For 4/1=β , one gets 
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The distances maxr  and minr  can also be obtained from mechanical energy and angular momentum conservation, 

taking into account that r
r

 and v
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 are orthogonal at apogee and at perigee  
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What remains of them, after eliminating v, is a second-degree equation whose solutions are maxr  and minr . 

2.4 

 By the Third Kepler Law, the period T in the new orbit satisfies that 
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where a, the semi-major axis of the ellipse, is given by 

  
2

0

12 β−
=

+
=

rrr
a minmax  

 Therefore 

  ( ) 2/32
0 1

−
−= βTT      

 For β = 1/4 h426
16
15 23

0 .TT
/

=⎟
⎠
⎞

⎜
⎝
⎛=

−

 

2
πα =  

minr maxr

v
r

∆  

0v
r

P 

0r

Figure 4 



36th International Physics Olympiad. Salamanca (España) 2005 
 

Th 1 Solution    Page 3 of 5 

R.S.E.F. 

3.1 

 Only if the satellite follows an open trajectory it can escape from the Earth gravity attraction. Then, the orbit 
eccentricity has to be equal or larger than one. The minimum boost corresponds to a parabolic trajectory, with ε = 1 

  βε =  ⇒  1=escβ  

 This can also be obtained by using that the total satellite energy has to be zero to reach infinity (Ep = 0) without 
residual velocity (Ek = 0) 
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 This also arises from ∞=T  or from ∞=maxr . 

3.2 

 Due to 1== escβε , the polar parabola equation is  

  
θcos1−

=
lr  

where the semi-latus-rectum continues to be 0rl = . The minimum Earth - satellite distance corresponds to πθ = , where  

  
2
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 This also arises from energy conservation (for E = 0) and from the equality between the angular momenta (L0) at the 
initial point P and at maximum approximation, where  r

r
 and v

r
 are orthogonal. 

4.1 

 If the satellite escapes to infinity with residual velocity ∞v , by energy conservation 
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4.2 

 As 1=>= escββε  the satellite trajectory will be a hyperbola. 

 The satellite angular momentum is the same at P than at the point 
where its residual velocity is ∞v  (Figure 5), thus 
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4.3  

 The angle between each asymptote and the hyperbola axis is that appearing in its polar equation in the limit ∞→r . 

This is the angle for which the equation denominator vanishes  
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Hint on the conical curves 
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Th 2     ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES  

SOLUTION 
 

1. After some time t, the normal to the coil plane makes an angle ω t with the magnetic field iBB
rr

00 = . Then, the 

magnetic flux through the coil is 
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2. The total field at the center the coil at the instant t is  
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And the mean value of the total magnetic field is  
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The needle orients along the mean field, therefore  
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Finally, the resistance of the coil measured by this procedure, in terms of θ , is 

   θ
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2
0 aN
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3. The force on a unit positive charge in a disk is radial and its modulus is 

   BrBvBv ω==×
rr

  

where B is the magnetic field at the center of the coil 
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Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is 
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Finally, the induced e.m.f. between 1 and 4 is ε = εD + ε D'  
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4. When the reading of G vanishes, 0=GI  and Kirchoff laws give an immediate answer. Then we have  
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5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.  
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7. The balance comes back towards the equilibrium position for a little angular deviation δϕ  if the gravity torques with 
respect to the fulcrum O are greater than the magnetic torques.  
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Th3     QUANTUM EFFECTS OF GRAVITY  

SOLUTION 
 

1. The only neutrons that will survive absorption at A are those that cannot cross H. Their turning points will be below H. 
So that, for a neutron entering to the cavity at height z with vertical velocity vz , conservation of energy implies 
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2. The cavity should be long enough to ensure the absorption of all 

neutrons with velocities outside the allowed range. Therefore, 
neutrons have to reach its maximum height at least once within the 
cavity. The longest required length corresponds to neutrons that enter 
at z = H with vz = 0 (see the figure). Calling tf to their time of fall 
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3. The rate of transmitted neutrons entering at a given height z, per unit height, is proportional to the range of allowed 

velocities at that height, ρ being the proportionality constant 
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The total number of transmitted neutrons is obtained by adding the neutrons entering at all possible heights. Calling 
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4. For a neutron falling from a height H, the action over a bouncing cycle is twice the action during the fall or the ascent  

( ) 2/3
1

0

2/12/3
0

2
3
41222 HgMdyyHgMdzpS

H

z =−== ∫∫  

Using the BS quantization condition 
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Numerical values for the first level: 
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Note that H1 is of the same order than the given cavity height, H = 50 µm. This opens up the possibility for observing 
the spatial quantization when varying H. 

 

5. The uncertainty principle says that the minimum time t∆  and the minimum energy E∆  satisfy the relation h≥∆∆ tE . 

During this time, the neutrons move to the right a distance 
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Now, the minimum neutron energy allowed in the cavity is E1, so that 1EE ≈∆ . Therefore, an estimation of the 
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