Th1 AN ILL FATED SATELLITE SOLUTION

1.1 and 1.2

$$
\left.\begin{array}{l}
G \frac{M_{T} m}{r_{0}^{2}}=m \frac{v_{0}^{2}}{r_{0}} \\
v_{0}=\frac{2 \pi r_{0}}{T_{0}} \\
g=\frac{G M_{T}}{R_{T}^{2}}
\end{array}\right\} \Rightarrow \begin{cases}r_{0}=\left(\frac{g R_{T}^{2} T_{0}^{2}}{4 \pi^{2}}\right)^{1 / 3} & \Rightarrow r_{0}=4.22 \cdot 10^{7} \mathrm{~m} \\
v_{0}=R_{T} \sqrt{\frac{g}{r_{0}}} & \Rightarrow v_{0}=3.07 \cdot 10^{3} \mathrm{~m} / \mathrm{s}\end{cases}
$$

1.3

$$
\begin{aligned}
& L_{0}=r_{0} m v_{0}=\frac{g R_{T}^{2}}{v_{0}^{2}} m v_{0} \Rightarrow L_{0}=\frac{m g R_{T}^{2}}{v_{0}} \\
& E_{0}=\frac{1}{2} m v_{0}^{2}-G \frac{M_{T} m}{r_{0}}=\frac{1}{2} m v_{0}^{2}-\frac{g R_{T}^{2} m}{r_{0}}=\frac{1}{2} m v_{0}^{2}-m v_{0}^{2} \Rightarrow E_{0}=-\frac{1}{2} m v_{0}^{2}
\end{aligned}
$$

2.1

The value of the semi-latus-rectum l is obtained taking into account that the orbital angular momentum is the same in both orbits. That is

$$
l=\frac{L_{0}^{2}}{G M_{T} m^{2}}=\frac{m^{2} g^{2} R_{T}^{4}}{v_{0}^{2}} \frac{1}{g R_{T}^{2} m^{2}}=\frac{g R_{T}^{2}}{v_{0}^{2}}=r_{0} \quad \Rightarrow \quad l=r_{0}
$$

The eccentricity value is

$$
\varepsilon^{2}=1+\frac{2 E L_{0}^{2}}{G^{2} M_{T}^{2} m^{3}}
$$

where E is the new satellite mechanical energy

$$
E=\frac{1}{2} m\left(v_{0}^{2}+\Delta v^{2}\right)-G \frac{M_{T} m}{r_{0}}=\frac{1}{2} m \Delta v^{2}+E_{0}=\frac{1}{2} m \Delta v^{2}-\frac{1}{2} m v_{0}^{2}
$$

that is

$$
E=\frac{1}{2} m v_{0}^{2}\left(\frac{\Delta v^{2}}{v_{0}^{2}}-1\right)=\frac{1}{2} m v_{0}^{2}\left(\beta^{2}-1\right)
$$

Combining both, one gets $\varepsilon=\beta$
This is an elliptical trajectory because $\varepsilon=\beta<1$.

The initial and final orbits cross at P, where the satellite engine fired instantaneously (see Figure 4). At this point

$$
r(\theta=\alpha)=r_{0}=\frac{r_{0}}{1-\beta \cos \alpha} \Rightarrow \alpha=\frac{\pi}{2}
$$

2.3

From the trajectory expression one immediately obtains that the maximum and minimum values of r correspond to $\theta=0$ and $\theta=\pi$ respectively (see Figure 4). Hence, they are given by

$$
r_{\max }=\frac{l}{1-\varepsilon} \quad r_{\min }=\frac{l}{1+\varepsilon}
$$

that is

$$
r_{\max }=\frac{r_{0}}{1-\beta} \quad \text { and } \quad r_{\min }=\frac{r_{0}}{1+\beta}
$$

Figure 4

For $\beta=1 / 4$, one gets

$$
r_{\max }=5.63 \cdot 10^{7} \mathrm{~m} ; \quad r_{\min }=3.38 \cdot 10^{7} \mathrm{~m}
$$

The distances $r_{\text {max }}$ and $r_{\text {min }}$ can also be obtained from mechanical energy and angular momentum conservation, taking into account that \vec{r} and \vec{v} are orthogonal at apogee and at perigee

$$
\begin{aligned}
& E=\frac{1}{2} m v_{0}^{2}\left(\beta^{2}-1\right)=\frac{1}{2} m v^{2}-\frac{g R_{T}^{2} m}{r} \\
& L_{0}=\frac{m g R_{T}^{2}}{v_{0}}=m v r
\end{aligned}
$$

What remains of them, after eliminating v, is a second-degree equation whose solutions are $r_{\max }$ and $r_{\min }$.
2.4

By the Third Kepler Law, the period T in the new orbit satisfies that

$$
\frac{T^{2}}{a^{3}}=\frac{T_{0}^{2}}{r_{0}^{3}}
$$

where a, the semi-major axis of the ellipse, is given by

$$
a=\frac{r_{\max }+r_{\min }}{2}=\frac{r_{0}}{1-\beta^{2}}
$$

Therefore

$$
T=T_{0}\left(1-\beta^{2}\right)^{-3 / 2}
$$

For $\beta=1 / 4$

$$
T=T_{0}\left(\frac{15}{16}\right)^{-3 / 2}=26.4 \mathrm{~h}
$$

3.1

Only if the satellite follows an open trajectory it can escape from the Earth gravity attraction. Then, the orbit eccentricity has to be equal or larger than one. The minimum boost corresponds to a parabolic trajectory, with $\varepsilon=1$

$$
\varepsilon=\beta \quad \Rightarrow \quad \beta_{\text {esc }}=1
$$

This can also be obtained by using that the total satellite energy has to be zero to reach infinity ($E_{p}=0$) without residual velocity $\left(E_{k}=0\right)$

$$
E=\frac{1}{2} m v_{0}^{2}\left(\beta_{\text {esc }}^{2}-1\right)=0 \Rightarrow \beta_{\text {esc }}=1
$$

This also arises from $T=\infty$ or from $r_{\text {max }}=\infty$.
3.2

Due to $\varepsilon=\beta_{\text {esc }}=1$, the polar parabola equation is

$$
r=\frac{l}{1-\cos \theta}
$$

where the semi-latus-rectum continues to be $l=r_{0}$. The minimum Earth - satellite distance corresponds to $\theta=\pi$, where

$$
r_{\text {min }}^{\prime}=\frac{r_{0}}{2}
$$

This also arises from energy conservation (for $E=0$) and from the equality between the angular momenta $\left(L_{0}\right)$ at the initial point P and at maximum approximation, where \vec{r} and \vec{v} are orthogonal.

4.1

If the satellite escapes to infinity with residual velocity v_{∞}, by energy conservation

$$
\begin{aligned}
& E=\frac{1}{2} m v_{0}^{2}\left(\beta^{2}-1\right)=\frac{1}{2} m v_{\infty}^{2} \Rightarrow \\
& v_{\infty}=v_{0}\left(\beta^{2}-1\right)^{1 / 2}
\end{aligned}
$$

4.2

As $\varepsilon=\beta>\beta_{\text {esc }}=1$ the satellite trajectory will be a hyperbola.

The satellite angular momentum is the same at P than at the point where its residual velocity is v_{∞} (Figure 5), thus

$$
m v_{0} r_{0}=m v_{\infty} b
$$

So

$$
b=r_{0} \frac{v_{0}}{v_{\infty}} \Rightarrow b=r_{0}\left(\beta^{2}-1\right)^{-1 / 2}
$$

Asymptote
 $36^{\text {th }}$ International Physics Olympiad. Salamanca (España) 2005

4.3

The angle between each asymptote and the hyperbola axis is that appearing in its polar equation in the limit $r \rightarrow \infty$. This is the angle for which the equation denominator vanishes

$$
1-\beta \cos \theta_{\text {asym }}=0 \quad \Rightarrow \quad \theta_{\text {asym }}=\cos ^{-1}\left(\frac{1}{\beta}\right)
$$

According to Figure 5

$$
\phi=\frac{\pi}{2}+\theta_{\text {asym }} \quad \Rightarrow \quad \phi=\frac{\pi}{2}+\cos ^{-1}\left(\frac{1}{\beta}\right)
$$

For $\beta=\frac{3}{2} \beta_{\text {esc }}=\frac{3}{2}$, one gets $\phi=138^{\circ}=2.41 \mathrm{rad}$

Th 1 ANSWER SHEET

Question	Basic formulas and ideas used	Analytical results	Numerical results	Marking guideline
1.1	$\begin{aligned} & G \frac{M_{T} m}{r_{0}^{2}}=m \frac{v_{0}^{2}}{r_{0}} \\ & v_{0}=\frac{2 \pi r_{0}}{T_{0}} \\ & g=\frac{G M_{T}}{R_{T}^{2}} \end{aligned}$		$r_{0}=4.22 \cdot 10^{7} \mathrm{~m}$	0.3
1.2		$v_{0}=R_{T} \sqrt{\frac{g}{r_{0}}}$	$v_{0}=3.07 \cdot 10^{3} \mathrm{~m} / \mathrm{s}$	$0.3+0.1$
1.3	$\begin{aligned} & \vec{L}=m \vec{r} \times \vec{v} \\ & E=\frac{1}{2} m v^{2}-G \frac{M m}{r} \end{aligned}$	$\begin{aligned} & L_{0}=\frac{m g R_{T}^{2}}{v_{0}} \\ & E_{0}=-\frac{1}{2} m v_{0}^{2} \end{aligned}$		0.4 0.4
2.1	Hint on the conical curves	$\begin{aligned} & l=r_{0} \\ & \varepsilon=\beta \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$
2.2			$\alpha=\frac{\pi}{2}$	1.0
2.3	Results of 2.1, or conservation of E and L	$\begin{aligned} & r_{\max }=\frac{r_{0}}{1-\beta} \\ & r_{\min }=\frac{r_{0}}{1+\beta} \end{aligned}$	$\begin{aligned} & r_{\max }=5.63 \cdot 10^{7} \mathrm{~m} \\ & r_{\min }=3.38 \cdot 10^{7} \mathrm{~m} \end{aligned}$	$1.0+0.2$
2.4	Third Kepler's Law	$T=T_{0}\left(1-\beta^{2}\right)^{-3 / 2}$	$T=26.4 \mathrm{~h}$	$0.5+0.2$
3.1	$\begin{aligned} & \varepsilon=1, E=0, T=\infty \text { or } \\ & r_{\max }=\infty \end{aligned}$		$\beta_{\text {esc }}=1$	0.5
3.2	$\varepsilon=1$ and results of 2.1	$r_{\text {min }}^{\prime}=\frac{r_{0}}{2}$		1.0
4.1	Conservation of E	$v_{\infty}=v_{0}\left(\beta^{2}-1\right)^{1 / 2}$		1.0
4.2	Conservation of L	$b=r_{0}\left(\beta^{2}-1\right)^{-1 / 2}$		1.0
4.3	Hint on the conical curves	$\phi=\frac{\pi}{2}+\cos ^{-1}\left(\frac{1}{\beta}\right)$	$\phi=138^{\circ}=2.41 \mathrm{rad}$	$1.0+0.2$

Th 2 ABSOLUTE MEASUREMENTS OF ELECTRICAL QUANTITIES

SOLUTION

1. After some time t, the normal to the coil plane makes an angle ωt with the magnetic field $\vec{B}_{0}=B_{0} \vec{i}$. Then, the magnetic flux through the coil is

$$
\phi=N \vec{B}_{0} \cdot \vec{S}
$$

where the vector surface \vec{S} is given by $\vec{S}=\pi a^{2}(\cos \omega t \vec{i}+\sin \omega t \vec{j})$
Therefore $\quad \phi=N \pi a^{2} B_{0} \cos \omega t$
The induced electromotive force is

$$
\varepsilon=-\frac{d \phi}{d t} \quad \Rightarrow \quad \varepsilon=N \pi a^{2} B_{0} \omega \sin \omega t
$$

The instantaneous power is $P=\varepsilon^{2} / \mathrm{R}$, therefore

$$
\langle P\rangle=\frac{\left(N \pi a^{2} B_{0} \omega\right)^{2}}{2 R}
$$

where we used $<\sin ^{2} \omega t>=\frac{1}{T} \int_{0}^{T} \sin ^{2} \omega t d t=\frac{1}{2}$
2. The total field at the center the coil at the instant t is

$$
\vec{B}_{t}=\vec{B}_{0}+\vec{B}_{i}
$$

where \vec{B}_{i} is the magnetic field due to the induced current $\vec{B}_{i}=B_{i}(\cos \omega t \vec{i}+\sin \omega t \vec{j})$
with

$$
B_{i}=\frac{\mu_{0} N I}{2 a} \quad \text { and } \quad I=\varepsilon / R
$$

Therefore

$$
B_{i}=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R} \sin \omega t
$$

The mean values of its components are

$$
\begin{aligned}
& \left\langle B_{i x}\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R}\langle\sin \omega t \cos \omega t\rangle=0 \\
& \left\langle B_{i y}\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{2 R}\left\langle\sin ^{2} \omega t\right\rangle=\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{4 R}
\end{aligned}
$$

And the mean value of the total magnetic field is

$$
\left\langle\vec{B}_{t}\right\rangle=B_{0} \vec{i}+\frac{\mu_{0} N^{2} \pi a B_{0} \omega}{4 R} \vec{j}
$$

The needle orients along the mean field, therefore

$$
\tan \theta=\frac{\mu_{0} N^{2} \pi a \omega}{4 R}
$$

Finally, the resistance of the coil measured by this procedure, in terms of θ, is

$$
R=\frac{\mu_{0} N^{2} \pi a \omega}{4 \tan \theta}
$$

3. The force on a unit positive charge in a disk is radial and its modulus is

$$
|\vec{v} \times \vec{B}|=v B=\omega r B
$$

where B is the magnetic field at the center of the coil

$$
B=N \frac{\mu_{0} I}{2 a}
$$

Then, the electromotive force (e.m.f.) induced on each disk by the magnetic field B is

$$
\varepsilon_{D}=\varepsilon_{D^{\prime}}=B \omega \int_{0}^{b} r d r=\frac{1}{2} B \omega b^{2}
$$

Finally, the induced e.m.f. between 1 and 4 is $\varepsilon=\varepsilon_{D}+\varepsilon_{D^{\prime}}$

$$
\varepsilon=N \frac{\mu_{0} b^{2} \omega I}{2 a}
$$

4. When the reading of G vanishes, $I_{G}=0$ and Kirchoff laws give an immediate answer. Then we have

$$
\varepsilon=I R \quad \Rightarrow \quad R=N \frac{\mu_{0} b^{2} \omega}{2 a}
$$

5. The force per unit length f between two indefinite parallel straight wires separated by a distance h is.

$$
f=\frac{\mu_{0}}{2 \pi} \frac{I_{1} I_{2}}{h}
$$

for $I_{1}=I_{2}=I$ and length $2 \pi a$, the force F induced on C_{2} by the neighbor coils C_{1} is

$$
F=\frac{\mu_{0} a}{h} I^{2}
$$

6. In equilibrium

$$
m g x=4 F d
$$

Then

$$
\begin{equation*}
m g x=\frac{4 \mu_{0} a d}{h} I^{2} \tag{1}
\end{equation*}
$$

so that

$$
I=\left(\frac{m g h x}{4 \mu_{0} a d}\right)^{1 / 2}
$$

7. The balance comes back towards the equilibrium position for a little angular deviation $\delta \varphi$ if the gravity torques with respect to the fulcrum O are greater than the magnetic torques.

$$
M g l \sin \delta \varphi+m g x \cos \delta \varphi>2 \mu_{0} a I^{2}\left(\frac{1}{h-\delta z}+\frac{1}{h+\delta z}\right) d \cos \delta \varphi
$$

Therefore, using the suggested approximation

$$
M g l \sin \delta \varphi+m g x \cos \delta \varphi>\frac{4 \mu_{0} a d I^{2}}{h}\left(1+\frac{\delta z^{2}}{h^{2}}\right) \cos \delta \varphi
$$

Taking into account the equilibrium condition (1), one obtains

$$
M g l \sin \delta \varphi>m g x \frac{\delta z^{2}}{h^{2}} \cos \delta \varphi
$$

Finally, for $\tan \delta \varphi \approx \sin \delta \varphi=\frac{\delta z}{d}$

$$
\delta z<\frac{M l h^{2}}{m x d} \quad \Rightarrow \quad \delta z_{\max }=\frac{M l h^{2}}{m x d}
$$

Th 2 ANSWER SHEET

Question	Basic formulas and ideas used	Analytical results	Marking guideline
1	$\begin{aligned} & \Phi=N \vec{B}_{0} \cdot \vec{S} \\ & \varepsilon=-\frac{d \Phi}{d t} \\ & P=\frac{\varepsilon^{2}}{R} \end{aligned}$	$\begin{aligned} & \varepsilon=N \pi a^{2} B_{0} \omega \sin \omega t \\ & \langle P\rangle=\frac{\left(N \pi a^{2} B_{0} \omega\right)^{2}}{2 R} \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.0 \end{aligned}$
2	$\begin{aligned} & \vec{B}=\vec{B}_{0}+\vec{B}_{i} \\ & B_{i}=\frac{\mu_{0} N}{2 a} I \\ & \tan \theta=\frac{\left\langle B_{y}\right\rangle}{\left\langle B_{x}\right\rangle} \end{aligned}$	$R=\frac{\mu_{0} N^{2} \pi a \omega}{4 \tan \theta}$	2.0
3	$\begin{aligned} \vec{E} & =\vec{v} \times \vec{B} \\ v & =\omega r \\ B & =N \frac{\mu_{0} I}{2 a} \\ \varepsilon & =\int_{0}^{b} \vec{E} d \vec{r} \end{aligned}$	$\varepsilon=N \frac{\mu_{0} b^{2} \omega I}{2 a}$	2.0
4	$\varepsilon=R I$	$R=N \frac{\mu_{0} b^{2} \omega}{2 a}$	0,5
5	$f=\frac{\mu_{0}}{2 \pi} \frac{I I^{\prime}}{h}$	$F=\frac{\mu_{0} a}{h} I^{2}$	1.0
6	$m g x=4 F d$	$I=\left(\frac{m g h x}{4 \mu_{0} a d}\right)^{1 / 2}$	1.0
7	$\Gamma_{\text {grav }}>\Gamma_{\text {mag }}$	$\delta z_{\max }=\frac{M l h^{2}}{m x d}$	2.0

Th3 QUANTUM EFFECTS OF GRAVITY SOLUTION

1. The only neutrons that will survive absorption at A are those that cannot cross H. Their turning points will be below H. So that, for a neutron entering to the cavity at height z with vertical velocity v_{Z}, conservation of energy implies

$$
\frac{1}{2} M v_{z}^{2}+M g z \leq M g H \quad \Rightarrow \quad-\sqrt{2 g(H-z)} \leq v_{z}(z) \leq \sqrt{2 g(H-z)}
$$

2. The cavity should be long enough to ensure the absorption of all neutrons with velocities outside the allowed range. Therefore, neutrons have to reach its maximum height at least once within the cavity. The longest required length corresponds to neutrons that enter
 at $z=H$ with $v_{z}=0$ (see the figure). Calling t_{f} to their time of fall

$$
\left.\begin{array}{l}
L_{c}=v_{x} 2 t_{f} \\
H=\frac{1}{2} g t_{f}^{2}
\end{array}\right\} \Rightarrow \quad L_{c}=2 v_{x} \sqrt{\frac{2 H}{g}} \quad L_{c}=6.4 \mathrm{~cm}
$$

3. The rate of transmitted neutrons entering at a given height z, per unit height, is proportional to the range of allowed velocities at that height, ρ being the proportionality constant

$$
\frac{d N_{c}(z)}{d z}=\rho\left[v_{z, \max }(z)-v_{z, \min }(z)\right]=2 \rho \sqrt{2 g(H-z)}
$$

The total number of transmitted neutrons is obtained by adding the neutrons entering at all possible heights. Calling $y=z / H$

$$
\begin{aligned}
& N_{c}(H)=\int_{0}^{H} d N_{c}(z)=\int_{0}^{H} 2 \rho \sqrt{2 g(H-z)} d z=2 \rho \sqrt{2 g} H^{3 / 2} \int_{0}^{1}(1-y)^{1 / 2} d y=2 \rho \sqrt{2 g} H^{3 / 2}\left[-\frac{2}{3}(1-y)^{3 / 2}\right]_{0}^{1} \\
\Rightarrow & N_{c}(H)=\frac{4}{3} \rho \sqrt{2 g} H^{3 / 2}
\end{aligned}
$$

4. For a neutron falling from a height H, the action over a bouncing cycle is twice the action during the fall or the ascent

$$
S=2 \int_{0}^{H} p_{z} d z=2 M \sqrt{2 g} H^{3 / 2} \int_{0}^{1}(1-y)^{1 / 2} d y=\frac{4}{3} M \sqrt{2 g} H^{3 / 2}
$$

Using the BS quantization condition

$$
S=\frac{4}{3} M \sqrt{2 g} H^{3 / 2}=n h \quad \Rightarrow \quad H_{n}=\left(\frac{9 h^{2}}{32 M^{2} g}\right)^{1 / 3} n^{2 / 3}
$$

The corresponding energy levels (associated to the vertical motion) are

$$
E_{n}=M g H_{n} \quad \Rightarrow \quad E_{n}=\left(\frac{9 M g^{2} h^{2}}{32}\right)^{1 / 3} n^{2 / 3}
$$

Numerical values for the first level:

$$
\begin{array}{ll}
H_{1}=\left(\frac{9 h^{2}}{32 M^{2} g}\right)^{1 / 3}=1.65 \times 10^{-5} \mathrm{~m} & H_{1}=16.5 \mu \mathrm{~m} \\
E_{1}=M g H_{1}=2.71 \times 10^{-31} \mathrm{~J}=1.69 \times 10^{-12} \mathrm{eV} & E_{1}=1.69 \mathrm{peV}
\end{array}
$$

Note that H_{1} is of the same order than the given cavity height, $H=50 \mu \mathrm{~m}$. This opens up the possibility for observing the spatial quantization when varying H.
5. The uncertainty principle says that the minimum time Δt and the minimum energy ΔE satisfy the relation $\Delta E \Delta t \geq \hbar$. During this time, the neutrons move to the right a distance

$$
\Delta x=v_{x} \Delta t \geq v_{x} \frac{\hbar}{\Delta E}
$$

Now, the minimum neutron energy allowed in the cavity is E_{1}, so that $\Delta E \approx E_{1}$. Therefore, an estimation of the minimum time and the minimum length required is

$$
t_{q} \approx \frac{\hbar}{E_{1}}=0.4 \cdot 10^{-3} \mathrm{~s}=0.4 \mathrm{~ms} \quad L_{q} \approx v_{x} \frac{\hbar}{E_{1}}=4 \cdot 10^{-3} \mathrm{~m}=4 \mathrm{~mm}
$$

Th 3 ANSWER SHEET

Question	Basic formulas used	Analytical results	Numerical results	Marking guideline
1	$\frac{1}{2} M v_{z}^{2}+M g z \leq M g H$	$-\sqrt{2 g(H-z)} \leq v_{z}(z) \leq \sqrt{2 g(H-z)}$		1.5
2	$\begin{aligned} & L_{c}=v_{x} 2 t_{f} \\ & H=\frac{1}{2} g t_{f}^{2} \end{aligned}$	$L_{c}=2 v_{x} \sqrt{\frac{2 H}{g}}$	$L_{C}=6.4 \mathrm{~cm}$	$1.3+0.2$
3	$\begin{aligned} & \frac{d N_{c}}{d z}=\rho\left[v_{z, \text { max }}-v_{z, \text { min }}\right] \\ & N_{c}(H)=\int_{0}^{H} d N_{c}(z) \end{aligned}$	$N_{c}(H)=\frac{4}{3} \rho \sqrt{2 g} H^{3 / 2}$		2.5
4	$S=2 \int_{0}^{H} p_{z} d z=n h$	$\begin{aligned} & H_{n}=\left(\frac{9 h^{2}}{32 M^{2} g}\right)^{1 / 3} n^{2 / 3} \\ & E_{n}=\left(\frac{9 M g^{2} h^{2}}{32}\right)^{1 / 3} n^{2 / 3} \end{aligned}$	$H_{1}=16.5 \mu \mathrm{~m}$ $E_{1}=1.69 \mathrm{peV}$	$1.6+0.2$ $0.5+0.2$
5	$\Delta E \Delta t \geq \hbar$ $\Delta E \approx E_{1}$ $\Delta x=v_{x} \Delta t$	$\begin{aligned} & t_{q} \approx \frac{\hbar}{E_{1}} \\ & L_{q} \approx v_{x} \frac{\hbar}{E_{1}} \end{aligned}$	$t_{q} \approx 0.4 \mathrm{~ms}$ $L_{q} \approx 4 \mathrm{~mm}$	$\begin{aligned} & 1.3+0.2 \\ & 0.3+0.2 \end{aligned}$

