
SOLUTIONS to Theory Question 1

Geometry Each side of the diamond has length L =
a

cos θ
and the dis-

tance between parallel sides is D =
a

cos θ
sin(2θ) = 2a sin θ. The area is the

product thereof, A = LD, giving

1.1 A = 2a2 tan θ .

The height H by which a tilt of φ lifts OUT1 above IN is H = D sin φ or

1.2 H = 2a sin θ sin φ .

Optical path length Only the two parallel lines for IN and OUT1 matter,
each having length L. With the de Broglie wavelength λ0 on the IN side and
λ1 on the OUT1 side, we have

∆Nopt =
L

λ0

− L

λ1

=
a

λ0 cos θ

(
1− λ0

λ1

)
.

The momentum is h/λ0 or h/λ1, respectively, and the statement of energy
conservation reads

1

2M

(
h

λ0

)2

=
1

2M

(
h

λ1

)2

+ MgH ,

which implies

λ0

λ1

=

√
1− 2

gM2

h2
λ2

0H .

Upon recognizing that (gM2/h2)λ2
0H is of the order of 10−7, this simplifies

to
λ0

λ1

= 1− gM2

h2
λ2

0H ,

and we get

∆Nopt =
a

λ0 cos θ

gM2

h2
λ2

0H

or
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1.3 ∆Nopt = 2
gM2

h2
a2λ0 tan θ sin φ .

A more compact way of writing this is

1.4 ∆Nopt =
λ0A

V
sin φ ,

where

1.4 V = 0.1597× 10−13 m3 = 0.1597 nm cm2

is the numerical value for the volume parameter V .
There is constructive interference (high intensity in OUT1) when the optical

path lengths of the two paths differ by an integer, ∆Nopt = 0,±1,±2, . . ., and
we have destructive interference (low intensity in OUT1) when they differ by
an integer plus half, ∆Nopt = ±1

2
,±3

2
,±5

2
, . . . . Changing φ from φ = −90◦

to φ = 90◦ gives

∆Nopt

∣∣∣∣φ=90◦

φ=−90◦
=

2λ0A

V
,

which tell us that

1.5 ] of cycles =
2λ0A

V
.

Experimental data For a = 3.6 cm and θ = 22.1◦ we have A = 10.53 cm2,
so that

1.6 λ0 =
19× 0.1597

2× 10.53
nm = 0.1441 nm .

And 30 full cycles for λ0 = 0.2 nm correspond to an area

1.7 A =
30× 0.1597

2× 0.2
cm2 = 11.98 cm2 .

2



SOLUTIONS to Theory Question 2

Basic relations Position x̃ shows up on the picture if light was emitted
from there at an instant that is earlier than the instant of the picture taking
by the light travel time T that is given by

T =
√

D2 + x̃2
/

c .

During the lapse of T the respective segment of the rod has moved the dis-
tance vT , so that its actual position x at the time of the picture taking
is

2.1 x = x̃ + β
√

D2 + x̃2 .

Upon solving for x̃ we find

2.2 x̃ = γ2x − βγ
√

D2 + (γx)2 .

Apparent length of the rod Owing to the Lorentz contraction, the
actual length of the moving rod is L/γ, so that the actual positions of the
two ends of the rod are

x± = x0 ±
L

2γ
for the

{

front end
rear end

}

of the rod.

The picture taken by the pinhole camera shows the images of the rod ends
at

x̃± = γ
(

γx0 ±
L

2

)

− βγ

√

D2 +
(

γx0 ±
L

2

)2

.

The apparent length L̃(x0) = x̃+ − x̃− is therefore

2.3 L̃(x0) = γL + βγ

√

D2 +
(

γx0 −
L

2

)2

− βγ

√

D2 +
(

γx0 +
L

2

)2

.

Since the rod moves with the constant speed v, we have
dx0

dt
= v and therefore

the question is whether L̃(x0) increases or decreases when x0 increases. We
sketch the two square root terms:
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The difference of the square roots with “−” and “+” appears in the expression
for L̃(x0), and this difference clearly decreases when x0 increases.

2.4 The apparent length decreases all the time.

Symmetric picture For symmetry reasons, the apparent length on the
symmetric picture is the actual length of the moving rod, because the light
from the two ends was emitted simultaneously to reach the pinhole at the
same time, that is:

2.5 L̃ =
L

γ
.

The apparent endpoint positions are such that x̃− = −x̃+, or

0 = x̃+ + x̃− = 2γ2x0 − βγ

√

D2 +
(

γx0 +
L

2

)2

− βγ

√

D2 +
(

γx0 −
L

2

)2

.
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In conjunction with

L

γ
= x̃+ − x̃− = γL − βγ

√

D2 +
(

γx0 +
L

2

)2

+ βγ

√

D2 +
(

γx0 −
L

2

)2

this tells us that
√

D2 +
(

γx0 ±
L

2

)2

=
2γ2x0 ± (γL − L/γ)

2βγ
=

γx0

β
±

βL

2
.

As they should, both the version with the upper signs and the version with
the lower signs give the same answer for x0, namely

2.6 x0 = β

√

D2 +
(

L

2γ

)2

.

The image of the middle of the rod on the symmetric picture is, therefore,
located at

x̃0 = γ2x0 − βγ
√

D2 + (γx0)2

= βγ





√

(γD)2 +
(

L

2

)2

−
√

(γD)2 +
(

βL

2

)2


 ,

which is at a distance ℓ = x̃+ − x̃0 =
L

2γ
− x̃0 from the image of the front

end, that is

2.7

ℓ =
L

2γ
− βγ

√

(γD)2 +
(

L

2

)2

+ βγ

√

(γD)2 +
(

βL

2

)2

or

ℓ =
L

2γ













1 −

βL

2
√

(γD)2 +
(

L

2

)2

+

√

(γD)2 +
(

βL

2

)2













.

Very early and very late pictures At the very early time, we have a
very large negative value for x0, so that the apparent length on the very early
picture is

L̃early = L̃(x0 → −∞) = (1 + β)γL =

√

1 + β

1 − β
L .
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Likewise, at the very late time, we have a very large positive value for x0, so
that the apparent length on the very late picture is

L̃late = L̃(x0 → ∞) = (1 − β)γL =

√

1 − β

1 + β
L .

It follows that L̃early > L̃late, that is:

2.8
The apparent length is 3 m on the early picture
and 1 m on the late picture.

Further, we have

β =
L̃early − L̃late

L̃early + L̃late

,

so that β =
1

2
and the velocity is

2.9 v =
c

2
.

It follows that γ =
L̃early + L̃late

2
√

L̃earlyL̃late

=
2√
3

= 1.1547. Combined with

2.10 L =
√

L̃earlyL̃late = 1.73 m ,

this gives the length on the symmetric picture as

2.11 L̃ =
2L̃earlyL̃late

L̃early + L̃late

= 1.50 m .
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SOLUTIONS to Theory Question 3

Digital Camera Two factors limit the resolution of the camera as a pho-
tographic tool: the diffraction by the aperture and the pixel size. For diffrac-
tion, the inherent angular resolution θR is the ratio of the wavelength λ of
the light and the aperture D of the camera,

θR = 1.22
λ

D
,

where the standard factor of 1.22 reflects the circular shape of the aperture.
When taking a picture, the object is generally sufficiently far away from the
photographer for the image to form in the focal plane of the camera where
the CCD chip should thus be placed. The Rayleigh diffraction criterion then
states that two image points can be resolved if they are separated by more
than

3.1
∆x = fθR = 1.22λ F] ,

which gives
∆x = 1.22 µm

if we choose the largest possible aperture (or smallest value F] = 2) and
assume λ = 500 nm for the typical wavelength of daylight

The digital resolution is given by the distance ` between the center of two
neighboring pixels. For our 5Mpix camera this distance is roughly

` =
L√
Np

= 15.65 µm .

Ideally we should match the optical and the digital resolution so that neither
aspect is overspecified. Taking the given optical resolution in the expression
for the digital resolution, we obtain

3.2 N =
(

L

∆x

)2

≈ 823 Mpix .

Now looking for the unknown optimal aperture, we note that we should
have ` ≥ ∆x, that is: F] ≤ F0 with

F0 =
L

1.22λ
√

N0

= 2

√
N

N0

= 14.34 .
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Since this F] value is not available, we choose the nearest value that has a
higher optical resolution,

3.3 F0 = 11 .

When looking at a picture at distance z from the eye, the (small) sub-
tended angle between two neighboring dots is φ = `/z where, as above, ` is
the distance between neighboring dots. Accordingly,

3.4 z =
`

φ
=

2.54× 10−2/300 dpi

5.82× 10−4 rad
= 14.55 cm ≈ 15 cm .

Hard-boiled egg All of the egg has to reach coagulation temperature.
This means that the increase in temperature is

∆T = Tc − T0 = 65 ◦C− 4 ◦C = 61 ◦C .

Thus the minimum amount of energy that we need to get into the egg such
that all of it has coagulated is given by U = µV C∆T where V = 4πR3/3 is
the egg volume. We thus find

3.5 U = µ
4πR3

3
C(Tc − T0) = 16768 J .

The simplified equation for heat flow then allows us to calculate how much
energy has flown into the egg through the surface per unit time. To get an
approximate value for the time we assume that the center of the egg is at the
initial temperature T = 4 ◦C. The typical length scale is ∆r = R, and the
temperature difference associated with it is ∆T = T1−T0 where T1 = 100 ◦C
(boiling water). We thus get

3.6 J = κ(T1 − T0)/R = 2458 W m−2 .

Heat is transferred from the boiling water to the egg through the surface of
the egg. This gives
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3.7 P = 4πR2J = 4πκR(T1 − T0) ≈ 19.3 W

for the amount of energy transferred to the egg per unit time. From this we
get an estimate for the time τ required for the necessary amount of heat to
flow into the egg all the way to the center:

3.8 τ =
U

P
=

µCR2

3κ

Tc − T0

T1 − T0

=
16768

19.3
= 869 s ≈ 14.5 min .

Lightning The total charge Q is just the area under the curve of the
figure. Because of the triangular shape, we immediately get

3.9 Q =
I0τ

2
= 5 C .

The average current is

3.10 I = Q/τ =
I0

2
= 50 kA ,

simply half the maximal value.
Since the bottom of the cloud gets negatively charged and the ground

positively charged, the situation is essentially that of a giant parallel-plate ca-
pacitor. The amount of energy stored just before lightning occurs is QE0h/2
where E0h is the voltage difference between the bottom of the cloud and the
ground, and lightning releases this energy. Altogether we thus get for one
lightning the energy QE0h/2 = 7.5 × 108 J. It follows that you could light
up the 100 W bulb for the duration

3.11 t =
32× 106

6.5× 109
× 7.5× 108 J

100 W
≈ 10 h .

Capillary Vessels Considering all capillaries, one has

Rall =
∆p

D
= 107 Pa m−3 s .
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All capillaries are assumed to be connected in parallel. The analogy between
Poiseuille’s and Ohm’s laws then gives the hydraulic resistance R of one
capillary as

1

Rall

=
N

R
.

We thus get

N =
R

Rall

for the number of capillary vessels in the human body. Now calculate R using
Poiseuille’s law,

R =
8ηL

πr4
≈ 4.5× 1016 kg m−4 s−1 ,

and arrive at

3.12 N ≈ 4.5× 1016

107
= 4.5× 109 .

The volume flow is D = Sallv where Sall = Nπr2 is the total cross-sectional
area associated with all capillary vessels. We then get

3.13 v =
D

Nπr2
=

r2∆p

8ηL
= 0.44 mm s−1 ,

where the second expression is found by alternatively considering one capil-
lary vessel by itself.

Skyscraper When the slab is at height z above the ground, the air in
the slab has pressure p(z) and temperature T (z) and the slab has volume
V (z) = Ah(z) where A is the cross-sectional area and h(z) is the thickness
of the slab. At any given height z, we combine the ideal gas law

pV = NkT (N is the number of molecules in the slab)

with the adiabatic law

pV γ = const or (pV )γ ∝ pγ−1

to conclude that pγ−1 ∝ T γ. Upon differentiation this gives (γ−1)
dp

p
= γ

dT

T
,

so that
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3.14
dT

T
= (1− 1/γ)

dp

p
.

Since the slab is not accelerated, the weight must be balanced by the force
that results from the difference in pressure at the top and bottom of the slab.
Taking downward forces as positive, we have the net force

0 = Nmg + A[p(z + h)− p(z)] =
pV

kT
mg +

V

h

dp

dz
h ,

so that
dp

dz
= −mg

k

p

T
or

3.15 dp = −mg

k

p

T
dz .

Taken together, the two expressions say that

dT = −(1− 1/γ)
mg

k
dz

and therefore we have

Ttop = Tbot − (1− 1/γ)
mgH

k

for a building of height H, which gives

3.16 Ttop = 20.6 ◦C

for H = 1 km and Tbot = 30 ◦C.
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