
1.1)  One may use any reasonable equation to obtain the dimension of the questioned 

quantities.  
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1.2) Using the Stefan-Boltzmann's law,  

 4θσ=
Area
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, or any equivalent relation, one obtains:     
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1.3)  The Stefan-Boltzmann's constant, up to a numerical coefficient, equals 

,
δγβασ BkGch=  where δγβα ,,, can be determined by dimensional analysis. Indeed, 

,][][][][][ δγβασ BkGch= where e.g. .][ 43 −−= KMTσ  
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The above equality is satisfied if,            
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2.1) Since A , the area of the event horizon, is to be calculated in terms of m from a 

classical theory of relativistic gravity, e.g. the General Relativity, it is a combination of 

c , characteristic of special relativity, and G  characteristic of gravity. Especially, it is 



independent of the Planck constant h  which is characteristic of quantum mechanical 

phenomena.  
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Exploiting dimensional analysis, 

( ) ( ) βαβαγαγβαγβα −−++−−−− ==⇒=⇒ 2312312][][][][ TLMMLTTLMLmcGA  

           (0.2) 

The above equality is satisfied if,   
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2.2) 

 

From the definition of entropy 
θ

dQ
dS = , one obtains 1221]][[][ −−− == KTMLES θ  (0.2) 

 

 

2.3)  Noting AS=η , one verifies that,  
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Using the same scheme as above, 
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3.1)  



The first law of thermodynamics is dWdQdE += . By assumption, 0=Wd . Using the 

definition of entropy, 
θ

dQ
dS = , one obtains,  

,0+= dSdE Hθ   (0.2) + (0.1), for setting 0=Wd . 

Using, 
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3.2) The Stefan-Boltzmann's law gives the rate of energy radiation per unit area. Noting 

that 2
mcE =  we have: 
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3.3)  

By integration:   
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At *
tt =  the black hole evaporates completely: 

0)( * =tm      (0.1)        3

4

2
*

3

16
m

hc

G
t =⇒    (0.2)+(0.1) (for the coefficient) 

 

 

3.4)  VC  measures the change in E  with respect to variation of θ .  
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4.1) Again the Stefan-Boltzmann's law gives the rate of energy loss per unit area of the 

black hole. A similar relation can be used to obtain the energy gained by the black 

hole due to the background radiation. To justify it, note that in the thermal 

equilibrium, the total change in the energy is vanishing. The blackbody radiation 

is given by the Stefan-Boltzmann's law. Therefore the rate of energy gain is given 

by the same formula.  
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4.2)   

Setting 0=
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, we have: 
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4.3)  
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4.4) Use the solution to 4.2,  
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One may also argue that *
m corresponds to thermal equilibrium. Thus for *

mm = the 

black hole temperature equals Bθ . 

Or one may set ( ) 0
44* =−−= A
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(0.1) + (0.4) (For the first and the second terms respectively) 

 



4.5) Considering the solution to 4.3, one verifies that it will go away from the 

equilibrium.       (0.6) 
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Question “Orange” 
 

1.1) 

First of all, we use the Gauss’s law for a single plate to obtain the electric field,  

0ε

σ
=E .               (0.2) 

The density of surface charge for a plate with charge, Q  and area, A  is 

A

Q
=σ .                (0.2) 

Note that the electric field is resulted by two equivalent parallel plates. Hence the 

contribution of each plate to the electric field is E
2

1
. Force is defined by the electric filed 

times the charge, then we have 

Force = QE
2

1
= 
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2ε
   (0.2)+ (0.2) ( The ½  coefficient + the final result) 

 

1.2) 

The Hook’s law for a spring is 

xkFm −= .   (0.2) 

In 1.2 we derived the electric force between two plates is  
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The system is stable. The equilibrium condition yields 

 em FF = ,    (0.2) 
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1.3) 

The electric field is constant thus the potential difference, V  is given by  

)( xdEV −=     (0.2) 

(Other reasonable approaches are acceptable. For example one may use the definition of 

capacity to obtainV .)   

By substituting the electric field obtained from previous section to the above equation, we 

get, 
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1.4)  

C is defined by the ratio of charge to potential difference, then  

V

Q
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Using the answer to 1.3, we get 

1

0

2

0 2
1

−









−=

dkA

Q

C

C

ε
          (0.2) 

 

1.5) 

Note that we have both the mechanical energy due to the spring  

2

2

1
kxUm = ,           (0.2)          

and the electrical energy stored in the capacitor.  
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Therefore the total energy stored in the system is 
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2.1) 

For the given value of x , the amount of charge on each capacitor is 
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2.2) 

Note that we have two capacitors. By using the answer to 1.1 for each capacitor, we get 
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As these two forces are in the opposite directions, the net electric force is  

21 FFFE −= ,   (0.2)     








+
−

−
=⇒

22

2

0

)(

1

)(

1

2 xdxd

VA
FE

ε
    (0.2) 

 

2.3) 

Ignoring terms of order 2
x  in the answer to 2.2., we get
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2.4) 

There are two springs placed in series with the same spring constant, k , then the 

mechanical force is 



xkFm 2−= .     (The coefficient (2) has (0.2)) 

Combining this result with the answer to 2.4 and noticing that these two forces are in the 

opposite directions, we get 
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2.5) 

By using the Newtown’s second law, 

maF =            (0.2) 

and the answer to 2.4, we get 
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3.1) 

Starting with Kirchhoff’s laws, for two electrical circuits, we have 
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Noting that sV = 
S

S
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Q
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 .    ((0.4) + (0.2): (0.4) for solving the above equations and (0.2) 

for final result) 

 



Note: Students may simplify the above relation using the approximation 22
xd >> . It does 

not matter in this section. 

 

3.2) 

Ignoring terms of order 2
x  in the answer to 3.1., we get
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4.1) 

The ratio of the electrical force to the mechanical (spring) force is 
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Putting the numerical values: 

9106.7 −
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m

E

F

F
 .               ((0.2) + (0.2) + (0.2): (0.2) for order of magnitude, (0.2) for 

two significant digits and (0.2) for correct answer (7.6 or 7.5)).  

As it is clear from this result, we can ignore the electrical forces compared to the electric 

force. 

 

 

 

4.2) 

As seen in the previous section, one may assume that the only force acting on the moving 

plate is due to springs:  

xkF 2=  .     (The concept of equilibrium (0.2)) 

Hence in mechanical equilibrium, the displacement of the moving plate is  

k

ma
x

2
=  . 

The maximum displacement is twice this amount, like the mass spring system in a 

gravitational force field, when the mass is let to fall. 
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k
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x =max     (0.2) 

 

4.3) 

At the acceleration 

ga = ,              (0.2) 

The maximum displacement is 

k
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x =max . 

Moreover, from the result obtained in 3.2, we have     
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This should be the same value given in the problem, V15.0 . 
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4.4) 

Let l  be the distance between the driver’s head and the steering wheel. It can be 

estimated to be about 

mm 14.0 −=l .            (0.2) 

Just at the time the acceleration begins, the relative velocity of the driver’s head with 

respect to the automobile is zero. 
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4.5) 

The time 2t is half of period of the harmonic oscillator, hence   

 

2
2

T
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The period of harmonic oscillator is simply given by  
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2
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As 21 tt > , the airbag activates in time.                   (0.2) 



Question “Pink” 
 

1.1  
Period = 3.0 days = s106.2 5× .   (0.4) 

Period = 
ω

π2
 (0.2) ⇒  15 srad104.2 −−×=ω . (0.2) 

 
 
1.2 
Calling the minima in the diagram 1, 90.001 ==αII  and 63.002 == βII , we have: 
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From above, one finds: 
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2.1) 
Doppler-Shift formula: 

c

v
≅

∆

0λ

λ
 (or equivalent relation)   (0.4) 

 

Maximum and minimum wavelengths:   7.5897max,1 =λ Å , 1.5894min,1 =λ  Å 

           0.5899max,2 =λ Å , 8.5892min,2 =λ  Å    

 
Difference between maximum and minimum wavelengths: 
                  6.31 =∆λ  Å   ,    2.62 =∆λ  Å   (All 0.6) 
 
Using the Doppler relation and noting that the shift is due to twice the orbital speed: (Factor of 
two 0.4) 

   
0

1
1 2λ

λ∆
= cv   4102.9 ×=  m/s   (0.2) 

   
0

2
2 2λ

λ∆
= cv   5106.1 ×=  m/s   (0.2) 



The student can use the wavelength of central line and maximum (or minimum) wavelengths. 
Marking scheme is given in the Excel file. 
 
 
2.2) As the center of mass is not moving with respect to us: (0.5) 
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2.3) 
 

Writing 
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v
r =  for 2,1=i  , we have  (0.4) 
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2.4) 
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3.1) 
 
The gravitational force is equal to mass times the centrifugal acceleration 
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4.1) As it is clear from the diagram, with one significant digit, 4=α .  (0.6) 
 
 

 
 
4.2) 

As we have found in the previous section: 
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   Watt103 28
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   Watt104 27
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4.3) The total power of the system is distributed on a sphere with radius d  to produce 0I , 
that is: 

2
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          = 100 ly. (0.2) 
 
 

4.4)   
d

r
=≅ θθ tan = 8101 −× rad.    (0.2 + 0.2) 

 
 

4.5) 
A typical optical wavelength is 0λ . Using uncertainty relation: 
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0λ
 50 m.   (0.2 + 0.2) 

 


