WATER-POWERED RICE-POUNDING MORTAR

A. Introduction

Rice is the main staple food of most people in Vietnam. To make white rice from paddy rice, one needs separate of the husk (a process called "hulling") and separate the bran layer ("milling"). The hilly parts of northern Vietnam are abundant with water streams, and people living there use water-powered rice-pounding mortar for bran layer separation. Figure 1 shows one of such mortars., Figure 2 shows how it works.

B. Design and operation

1. Design.

The rice-pounding mortar shown in Figure 1 has the following parts:
The mortar, basically a wooden container for rice.
The lever, which is a tree trunk with one larger end and one smaller end. It can rotate around a horizontal axis. A pestle is attached perpendicularly to the lever at the smaller end. The length of the pestle is such that it touches the rice in the mortar when the lever lies horizontally. The larger end of the lever is carved hollow to form a bucket. The shape of the bucket is crucial for the mortar's operation.

2. Modes of operation

The mortar has two modes.
Working mode. In this mode, the mortar goes through an operation cycle illustrated in Figure 2.

The rice-pounding function comes from the work that is transferred from the pestle to the rice during stage f) of Figure 2. If, for some reason, the pestle never touches the rice, we say that the mortar is not working.

Rest mode with the lever lifted up. During stage c) of the operation cycle (Figure 2), as the tilt angle α increases, the amount of water in the bucket decreases. At one particular moment in time, the amount of water is just enough to counterbalance the weight of the lever. Denote the tilting angle at this instant by β. If the lever is kept at angle β and the initial angular velocity is zero, then the lever will remain at this position forever. This is the rest mode with the lever lifted up. The stability of this position depends on the flow rate of water into the bucket, $Ф$. If Φ exceeds some value Φ_{2}, then this rest mode is stable, and the mortar cannot be in the working mode.

In other words, Φ_{2} is the minimal flow rate for the mortar not to work.

Figure 1
A water-powered rice-pounding mortar

OPERATION CYCLE OF A WATER-POWERED RICE-POUNDING MORTAR

a)

b)

Figure 2
a) At the beginning there is no water in the bucket, the pestle rests on the mortar. Water flows into the bucket with a small rate, but for some time the lever remains in the horizontal position.
b) At some moment the amount of water is enough to lift the lever up. Due to the tilt, water rushes to the farther side of the bucket, tilting the lever more quickly.

Water starts to flow out at $\alpha=\alpha_{1}$.
c) As the angle α increases, water starts to flow out. At some particular tilt angle, $\alpha=\beta$, the total torque is zero.
d) α continues increasing, water continues to flow out until no water remains in the bucket.
e) α keeps increasing because of inertia. Due to the shape of the bucket, water falls into the bucket but immediately flows out. The inertial motion of the lever continues until α reaches the maximal value α_{0}.
f) With no water in the bucket, the weight of the lever pulls it back to the initial horizontal position. The pestle gives the mortar (with rice inside) a pound and a new cycle begins.

C. The problem

Consider a water-powered rice-pounding mortar with the following parameters (Figure 3)

The mass of the lever (including the pestle but without water) is $M=30 \mathrm{~kg}$,
The center of mass of the lever is G . The lever rotates around the axis T (projected onto the point T on the figure).

The moment of inertia of the lever around T is $I=12 \mathrm{~kg} \cdot \mathrm{~m}^{2}$.
When there is water in the bucket, the mass of water is denoted as m, the center of mass of the water body is denoted as N .

The tilt angle of the lever with respect to the horizontal axis is α.
The main length measurements of the mortar and the bucket are as in Figure 3.
Neglect friction at the rotation axis and the force due to water falling onto the bucket. In this problem, we make an approximation that the water surface is always horizontal.

Figure 3 Design and dimensions of the rice-pounding mortar

1. The structure of the mortar

At the beginning, the bucket is empty, and the lever lies horizontally. Then water flows into the bucket until the lever starts rotating. The amount of water in the bucket at this moment is $m=1.0 \mathrm{~kg}$.
1.1. Determine the distance from the center of mass G of the lever to the rotation axis T . It is known that GT is horizontal when the bucket is empty.
1.2. Water starts flowing out of the bucket when the angle between the lever and the horizontal axis reaches α_{1}. The bucket is completely empty when this angle is α_{2}. Determine α_{1} and α_{2}.
1.3. Let $\mu(\alpha)$ be the total torque (relative to the axis T) which comes from the
weight of the lever and the water in the bucket. $\mu(\alpha)$ is zero when $\alpha=\beta$. Determine β and the mass m_{1} of water in the bucket at this instant.

2. Parameters of the working mode

Let water flow into the bucket with a flow rate Φ which is constant and small. The amount of water flowing into the bucket when the lever is in motion is negligible. In this part, neglect the change of the moment of inertia during the working cycle.
2.1. Sketch a graph of the torque μ as a function of the angle $\alpha, \mu(\alpha)$, during one operation cycle. Write down explicitly the values of $\mu(\alpha)$ at angle α_{1}, α_{2}, and $\alpha=0$.
2.2. From the graph found in section 2.1., discuss and give the geometric interpretation of the value of the total energy $W_{\text {total }}$ produced by $\mu(\alpha)$ and the work $W_{\text {pounding }}$ that is transferred from the pestle to the rice.
2.3. From the graph representing μ versus α, estimate α_{0} and $W_{\text {pounding }}$ (assume the kinetic energy of water flowing into the bucket and out of the bucket is negligible.) You may replace curve lines by zigzag lines, if it simplifies the calculation.

3. The rest mode

Let water flow into the bucket with a constant rate Φ, but one cannot neglect the amount of water flowing into the bucket during the motion of the lever.
3.1. Assuming the bucket is always overflown with water,
3.1.1. Sketch a graph of the torque μ as a function of the angle α in the vicinity of $\alpha=\beta$. To which kind of equilibrium does the position $\alpha=\beta$ of the lever belong?
3.1.2. Find the analytic form of the torque $\mu(\alpha)$ as a function of $\Delta \alpha$ when $\alpha=\beta+\Delta \alpha$, and $\Delta \alpha$ is small.
3.1.3. Write down the equation of motion of the lever, which moves with zero initial velocity from the position $\alpha=\beta+\Delta \alpha$ ($\Delta \alpha$ is small). Show that the motion is, with good accuracy, harmonic oscillation. Compute the period τ.
3.2. At a given Φ, the bucket is overflown with water at all times only if the lever moves sufficiently slowly. There is an upper limit on the amplitude of harmonic oscillation, which depends on Φ. Determine the minimal value Φ_{1} of Φ (in kg / s) so that the lever can make a harmonic oscillator motion with amplitude 1°.
3.3. Assume that Φ is sufficiently large so that during the free motion of the lever when the tilting angle decreases from α_{2} to α_{1} the bucket is always overflown with water. However, if Φ is too large the mortar cannot operate. Assuming that the motion of the lever is that of a harmonic oscillator, estimate the minimal flow rate Φ_{2} for the rice-pounding mortar to not work.

CHERENKOV LIGHT AND RING IMAGING COUNTER

Light propagates in vacuum with the speed c. There is no particle which moves with a speed higher than c. However, it is possible that in a transparent medium a particle moves with a speed v higher than the speed of the light in the same medium $\frac{c}{n}$, where n is the refraction index of the medium. Experiment (Cherenkov, 1934) and theory (Tamm and Frank, 1937) showed that a charged particle, moving with a speed v in a transparent medium with refractive index n such that $v>\frac{c}{n}$, radiates light, called Cherenkov light, in directions forming with the trajectory an angle

$$
\begin{equation*}
\theta=\arccos \frac{1}{\beta n} \tag{1}
\end{equation*}
$$

where $\beta=\frac{v}{c}$.

1. To establish this fact, consider a particle moving at constant velocity $v>\frac{C}{n}$ on a straight line. It passes A at time 0 and B at time t_{1}. As the problem is symmetric with respect to rotations around AB , it is sufficient to consider light rays in a plane containing AB.

At any point C between A and B , the particle emits a spherical light wave, which propagates with velocity $\frac{c}{n}$. We define the wave front at a given time t as the envelope of all these spheres at this time.
1.1. Determine the wave front at time t_{1} and draw its intersection with a plane containing the trajectory of the particle.
1.2. Express the angle φ between this intersection and the trajectory of the particle in terms of n and β.
2. Let us consider a beam of particles moving with velocity $v>\frac{C}{n}$, such that the angle θ is small, along a straight line IS. The beam crosses a concave spherical mirror of focal length f and center C , at point S . SC makes with SI a small angle α (see the figure in the Answer Sheet). The particle beam creates a ring image in the focal plane of the mirror.

Explain why with the help of a sketch illustrating this fact. Give the position of the center O and the radius r of the ring image.
This set up is used in ring imaging Cherenkov counters (RICH) and the medium which the particle traverses is called the radiator.

Note: in all questions of the present problem, terms of second order and higher in α and θ will be neglected.
3. A beam of particles of known momentum $p=10.0 \mathrm{GeV} / \mathrm{c}$ consists of three types of particles: protons, kaons and pions, with rest mass $M_{\mathrm{p}}=0.94 \mathrm{GeV} / c^{2}$, $M_{\kappa}=0.50 \mathrm{GeV} / c^{2}$ and $M_{\pi}=0.14 \mathrm{GeV} / c^{2}$, respectively. Remember that $p c$ and $M c^{2}$ have the dimension of an energy, and 1 eV is the energy acquired by an electron after being accelerated by a voltage 1 V , and $1 \mathrm{GeV}=10^{9} \mathrm{eV}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}$.

The particle beam traverses an air medium (the radiator) under the pressure P. The refraction index of air depends on the air pressure P according to the relation $n=1+a P$ where $a=2.7 \times 10^{-4} \mathrm{~atm}^{-1}$
3.1. Calculate for each of the three particle types the minimal value $P_{\text {min }}$ of the air pressure such that they emit Cherenkov light.
3.2. Calculate the pressure $P_{\frac{1}{2}}$ such that the ring image of kaons has a radius equal to one half of that corresponding to pions. Calculate the values of θ_{κ} and θ_{π} in this case.

Is it possible to observe the ring image of protons under this pressure?
4. Assume now that the beam is not perfectly monochromatic: the particles momenta are distributed over an interval centered at $10 \mathrm{GeV} / c$ having a half width at half height Δp. This makes the ring image broaden, correspondingly θ distribution has a half width at half height $\Delta \theta$. The pressure of the radiator is $P_{\frac{1}{2}}$ determined in 3.2.
4.1. Calculate $\frac{\Delta \theta_{\kappa}}{\Delta p}$ and $\frac{\Delta \theta_{\pi}}{\Delta p}$, the values taken by $\frac{\Delta \theta}{\Delta p}$ in the pions and kaons cases.
4.2. When the separation between the two ring images, $\theta_{\pi}-\theta_{\kappa}$, is greater than 10
times the half-width sum $\Delta \theta=\Delta \theta_{\kappa}+\Delta \theta_{\pi}$, that is $\theta_{\pi}-\theta_{\kappa}>10 \Delta \theta$, it is possible to distinguish well the two ring images. Calculate the maximal value of Δp such that the two ring images can still be well distinguished.
5. Cherenkov first discovered the effect bearing his name when he was observing a bottle of water located near a radioactive source. He saw that the water in the bottle emitted light.
5.1. Find out the minimal kinetic energy $T_{\min }$ of a particle with a rest mass M moving in water, such that it emits Cherenkov light. The index of refraction of water is $n=1.33$.
5.2. The radioactive source used by Cherenkov emits either α particles (i.e. helium nuclei) having a rest mass $M_{\alpha}=3.8 \mathrm{GeV} / c^{2}$ or β particles (i.e. electrons) having a rest mass $M_{\mathrm{e}}=0.51 \mathrm{MeV} / c^{2}$. Calculate the numerical values of $T_{\min }$ for α particles and β particles.

Knowing that the kinetic energy of particles emitted by radioactive sources never exceeds a few MeV , find out which particles give rise to the radiation observed by Cherenkov.
6. In the previous sections of the problem, the dependence of the Cherenkov effect on wavelength λ has been ignored. We now take into account the fact that the Cherenkov radiation of a particle has a broad continuous spectrum including the visible range (wavelengths from $0.4 \mu \mathrm{~m}$ to $0.8 \mu \mathrm{~m}$). We know also that the index of refraction n of the radiator decreases linearly by 2% of $n-1$ when λ increases over this range.
6.1. Consider a beam of pions with definite momentum of $10.0 \mathrm{GeV} / c$ moving in air at pressure 6 atm . Find out the angular difference $\delta \theta$ associated with the two ends of the visible range.
6.2. On this basis, study qualitatively the effect of the dispersion on the ring image of pions with momentum distributed over an interval centered at $p=10 \mathrm{GeV} / c$ and having a half width at half height $\Delta p=0.3 \mathrm{GeV} / c$.
6.2.1. Calculate the broadening due to dispersion (varying refraction index) and that due to achromaticity of the beam (varying momentum).
6.2.2. Describe how the color of the ring changes when going from its inner to outer edges by checking the appropriate boxes in the Answer Sheet.

CHANGE OF AIR TEMPERATURE WITH ALTITUDE, ATMOSPHERIC STABILITY AND AIR POLLUTION

Vertical motion of air governs many atmospheric processes, such as the formation of clouds and precipitation and the dispersal of air pollutants. If the atmosphere is stable, vertical motion is restricted and air pollutants tend to be accumulated around the emission site rather than dispersed and diluted. Meanwhile, in an unstable atmosphere, vertical motion of air encourages the vertical dispersal of air pollutants. Therefore, the pollutants' concentrations depend not only on the strength of emission sources but also on the stability of the atmosphere.

We shall determine the atmospheric stability by using the concept of air parcel in meteorology and compare the temperature of the air parcel rising or sinking adiabatically in the atmosphere to that of the surrounding air. We will see that in many cases an air parcel containing air pollutants and rising from the ground will come to rest at a certain altitude, called a mixing height. The greater the mixing height, the lower the air pollutant concentration. We will evaluate the mixing height and the concentration of carbon monoxide emitted by motorbikes in the Hanoi metropolitan area for a morning rush hour scenario, in which the vertical mixing is restricted due to a temperature inversion (air temperature increases with altitude) at elevations above 119 m .

Let us consider the air as an ideal diatomic gas, with molar mass $\mu=29 \mathrm{~g} / \mathrm{mol}$.

Quasi equilibrium adiabatic transformation obey the equation $p V^{\gamma}=$ const, where $\gamma=\frac{C_{p}}{C_{V}}$ is the ratio between isobaric and isochoric heat capacities of the gas.

The student may use the following data if necessary:
The universal gas constant is $R=8.31 \mathrm{~J} /(\mathrm{mol} . \mathrm{K})$.
The atmospheric pressure on ground is $p_{0}=101.3 \mathrm{kPa}$
The acceleration due to gravity is constant, $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
The molar isobaric heat capacity is $c_{p}=\frac{7}{2} R$ for air.
The molar isochoric heat capacity is $c_{V}=\frac{5}{2} R$ for air.

Mathematical hints

a. $\int \frac{d x}{A+B x}=\frac{1}{B} \int \frac{d(A+B x)}{A+B x}=\frac{1}{B} \ln (A+B x)$
b. The solution of the differential equation $\frac{d x}{d t}+A x=B \quad$ (with $\quad A$ and $B \quad$ constant) is $x(t)=x_{1}(t)+\frac{B}{A}$ where $x_{1}(t)$ is the solution of the differential equation $\frac{d x}{d t}+A x=0$.
c. $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e$

1. Change of pressure with altitude.

1.1. Assume that the temperature of the atmosphere is uniform and equal to T_{0}. Write down the expression giving the atmospheric pressure p as a function of the altitude Z.
1.2. Assume that the temperature of the atmosphere varies with the altitude according to the relation

$$
T(z)=T(0)-\Lambda z
$$

where Λ is a constant, called the temperature lapse rate of the atmosphere (the vertical gradient of temperature is $-\Lambda$).
1.2.1. Write down the expression giving the atmospheric pressure p as a function of the altitude Z.
1.2.2. A process called free convection occurs when the air density increases with altitude. At which values of Λ does the free convection occur?

2. Change of the temperature of an air parcel in vertical motion

Consider an air parcel moving upward and downward in the atmosphere. An air parcel is a body of air of sufficient dimension, several meters across, to be treated as an independent thermodynamical entity, yet small enough for its temperature to be considered uniform. The vertical motion of an air parcel can be treated as a quasi adiabatic process, i.e. the exchange of heat with the surrounding air is negligible. If the air parcel rises in the atmosphere, it expands and cools. Conversely, if it moves downward, the increasing outside pressure will compress the air inside the parcel and its temperature will increase.

As the size of the parcel is not large, the atmospheric pressure at different points on
the parcel boundary can be considered to have the same value $p(z)$, with z - the altitude of the parcel center. The temperature in the parcel is uniform and equals to $T_{\text {parcel }}(z)$, which is generally different from the temperature of the surrounding air $T(z)$. In parts 2.1 and 2.2 , we do not make any assumption about the form of $T(z)$.
2.1. The change of the parcel temperature $T_{\text {parcel }}$ with altitude is defined by $\frac{d T_{\text {parcel }}}{d z}=-G$. Derive the expression of $G\left(T, T_{\text {parcel }}\right)$.
2.2. Consider a special atmospheric condition in which at any altitude z the temperature T of the atmosphere equals to that of the parcel $T_{\text {parcel }}, T(z)=T_{\text {parcel }}(z)$. We use Γ to denote the value of G when $T=T_{\text {parcel }}$, that is $\Gamma=-\frac{d T_{\text {parcel }}}{d z}$ (with $T=T_{\text {parcel }}$). Γ is called dry adiabatic lapse rate.

2.2.1. Derive the expression of Γ

2.2.2. Calculate the numerical value of Γ.
2.2.3. Derive the expression of the atmospheric temperature $T(z)$ as a function of the altitude.
2.3. Assume that the atmospheric temperature depends on altitude according to the relation $T(z)=T(0)-\Lambda z$, where Λ is a constant. Find the dependence of the parcel temperature $T_{\text {parcel }}(z)$ on altitude z.
2.4. Write down the approximate expression of $T_{\text {parcel }}(z)$ when $|\Lambda z| \ll T(0)$ and $T(0) \approx T_{\text {parcel }}(0)$.

3. The atmospheric stability.

In this part, we assume that T changes linearly with altitude.
3.1. Consider an air parcel initially in equilibrium with its surrounding air at altitude
z_{0}, i.e. it has the same temperature $T\left(z_{0}\right)$ as that of the surrounding air. If the parcel is moved slightly up and down (e.g. by atmospheric turbulence), one of the three following cases may occur:

- The air parcel finds its way back to the original altitude z_{0}, the equilibrium of the parcel is stable. The atmosphere is said to be stable.
- The parcel keeps moving in the original direction, the equilibrium of the parcel is unstable. The atmosphere is unstable.
- The air parcel remains at its new position, the equilibrium of the parcel is indifferent. The atmosphere is said to be neutral.
What is the condition on Λ for the atmosphere to be stable, unstable or neutral?
3.2. A parcel has its temperature on ground $T_{\text {parcel }}(0)$ higher than the temperature $T(0)$ of the surrounding air. The buoyancy force will make the parcel rise. Derive the expression for the maximal altitude the parcel can reach in the case of a stable atmosphere in terms of Λ and Γ.

4. The mixing height

4.1. Table 1 shows air temperatures recorded by a radio sounding balloon at 7:00 am on a November day in Hanoi. The change of temperature with altitude can be approximately described by the formula $T(z)=T(0)-\Lambda z$ with different lapse rates Λ in the three layers $0<z<96 \mathrm{~m}, 96 \mathrm{~m}<\mathrm{z}<119 \mathrm{~m}$ and $119 \mathrm{~m}<z<215 \mathrm{~m}$.

Consider an air parcel with temperature $T_{\text {parcel }}(0)=22^{\circ} \mathrm{C}$ ascending from ground. On the basis of the data given in Table 1 and using the above linear approximation, calculate the temperature of the parcel at the altitudes of 96 m and 119 m .
4.2. Determine the maximal elevation H the parcel can reach, and the temperature $T_{\text {parcel }}(H)$ of the parcel.
H is called the mixing height. Air pollutants emitted from ground can mix with the air in the atmosphere (e.g. by wind, turbulence and dispersion) and become diluted within this layer.

Table 1

Data recorded by a radio sounding balloon at 7:00 am on a November day in Hanoi.

Altitude, m	Temperature, ${ }^{\circ} \mathrm{C}$
5	21.5
60	20.6
64	20.5
69	20.5
75	20.4
81	20.3
90	20.2
96	20.1
102	20.1
109	20.1
113	20.1
119	20.1
128	20.2
136	20.3
145	20.4
153	20.5
159	20.6
168	20.8
178	21.0
189	21.5
202	21.8
215	22.0
225	22.1
234	22.3
246	2
69	

5. Estimation of carbon monoxide (CO) pollution during a morning motorbike rush

 hour in Hanoi.Hanoi metropolitan area can be approximated by a rectangle with base dimensions L and W as shown in the figure, with one side taken along the south-west bank of the Red River.

It is estimated that during the morning rush hour, from 7:00 am to 8:00 am, there are 8×10^{5} motorbikes on the road, each running on average 5 km and emitting 12 g of CO per kilometer. The amount of CO pollutant is approximately considered as emitted uniformly in time, at a constant rate M during the rush hour. At the same time, the clean north-east wind blows perpendicularly to the Red River (i.e. perpendicularly to the sides L of the rectangle) with velocity u, passes the city with the same velocity, and carries a part of the CO-polluted air out of the city atmosphere.

Also, we use the following rough approximate model:

- The CO spreads quickly throughout the entire volume of the mixing layer above the Hanoi metropolitan area, so that the concentration $C(t)$ of CO at time t can be assumed to be constant throughout that rectangular box of dimensions L, W and H.
- The upwind air entering the box is clean and no pollution is assumed to be lost from the box through the sides parallel to the wind.
- Before 7:00 am, the CO concentration in the atmosphere is negligible.
5.1. Derive the differential equation determining the CO pollutant concentration $C(t)$ as a function of time.
5.2. Write down the solution of that equation for $C(t)$.
5.3. Calculate the numerical value of the concentration $C(t)$ at 8:00 a.m.

Given $L=15 \mathrm{~km}, W=8 \mathrm{~km}, u=1 \mathrm{~m} / \mathrm{s}$.

