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Theoretical Problem No. 1

WATER-POWERED RICE-POUNDING MORTAR

A. Introduction

Rice is the main staple food of most people in Vietnam. To make white rice from
paddy rice, one needs separate of the husk (a process called "hulling”) and separate the
bran layer ("milling™). The hilly parts of northern Vietnam are abundant with water
streams, and people living there use water-powered rice-pounding mortar for bran layer
separation. Figure 1 shows one of such mortars., Figure 2 shows how it works.

B. Design and operation
1. Design.
The rice-pounding mortar shown in Figure 1 has the following parts:

The mortar, basically a wooden container for rice.

The lever, which is a tree trunk with one larger end and one smaller end. It can rotate
around a horizontal axis. A pestle is attached perpendicularly to the lever at the smaller
end. The length of the pestle is such that it touches the rice in the mortar when the lever
lies horizontally. The larger end of the lever is carved hollow to form a bucket. The shape
of the bucket is crucial for the mortar's operation.

2. Modes of operation

The mortar has two modes.

Working mode. In this mode, the mortar goes through an operation cycle illustrated in
Figure 2.

The rice-pounding function comes from the work that is transferred from the pestle to
the rice during stage f) of Figure 2. If, for some reason, the pestle never touches the rice,
we say that the mortar is not working.

Rest mode with the lever lifted up. During stage c) of the operation cycle (Figure 2),
as the tilt angle « increases, the amount of water in the bucket decreases. At one
particular moment in time, the amount of water is just enough to counterbalance the
weight of the lever. Denote the tilting angle at this instant by £ . If the lever is kept at
angle S and the initial angular velocity is zero, then the lever will remain at this
position forever. This is the rest mode with the lever lifted up. The stability of this
position depends on the flow rate of water into the bucket, ®. If ® exceeds some

value @, then this rest mode is stable, and the mortar cannot be in the working mode.

In other words, @, is the minimal flow rate for the mortar not to work.
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Figure 1
A water-powered rice-pounding mortar



.,

IPh

39th International Physics Olympiad - Hanoi - Vietnam - 2008

Theoretical Problem No. 1

OPERATION CYCLE OF A WATER-POWERED RICE-POUNDING MORTAR

Figure 2

a) At the beginning there is no water in
the bucket, the pestle rests on the mortar.
Water flows into the bucket with a small
rate, but for some time the lever remains
in the horizontal position.

b) At some moment the amount of water
is enough to lift the lever up. Due to the
tilt, water rushes to the farther side of the
bucket, tilting the lever more quickly.

Water starts to flow outat o = «;.

c) As the angle « increases, water
starts to flow out. At some particular tilt
angle, a =/, the total torque is zero.

d) «a continues increasing, water
continues to flow out until no water
remains in the bucket.

e) o Kkeeps increasing because of
inertia. Due to the shape of the bucket,
water falls into the bucket but
immediately flows out. The inertial
motion of the lever continues until «

reaches the maximal value ¢ .

f) With no water in the bucket, the
weight of the lever pulls it back to the
initial horizontal position. The pestle
gives the mortar (with rice inside) a
pound and a new cycle begins.
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C. The problem
Consider a water-powered rice-pounding mortar with the following parameters

(Figure 3)

The mass of the lever (including the pestle but without water) is M =30 kg,

The center of mass of the lever is G. The lever rotates around the axis T
(projected onto the point T on the figure).

The moment of inertia of the lever around Tis 7 =12 kg-mZ.

When there is water in the bucket, the mass of water is denoted as m, the center
of mass of the water body is denoted as N.

The tilt angle of the lever with respect to the horizontal axis is «.

The main length measurements of the mortar and the bucket are as in Figure 3.

Neglect friction at the rotation axis and the force due to water falling onto the bucket.
In this problem, we make an approximation that the water surface is always horizontal.

T. :
Bucket az20cn, |- v |
Lever
- 8 cm Pestle
=74 cm
:‘:: G
y =300 om 7b =15cm Mortar

Figure 3 Design and dimensions of the rice-pounding mortar

1. The structure of the mortar
At the beginning, the bucket is empty, and the lever lies horizontally. Then water flows
into the bucket until the lever starts rotating. The amount of water in the bucket at this
moment is m =1.0 kg.
1.1. Determine the distance from the center of mass G of the lever to the rotation
axis T. It is known that GT is horizontal when the bucket is empty.
1.2. Water starts flowing out of the bucket when the angle between the lever and the

horizontal axis reaches «;. The bucket is completely empty when this angle is «,.
Determine a,andc, .

1.3. Let y(a) be the total torque (relative to the axis T) which comes from the
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weight of the lever and the water in the bucket. y(a) is zero when o = [ . Determine

B and the mass m, of water in the bucket at this instant.

2. Parameters of the working mode

Let water flow into the bucket with a flow rate ® which is constant and small. The
amount of water flowing into the bucket when the lever is in motion is negligible. In
this part, neglect the change of the moment of inertia during the working cycle.

2.1. Sketch a graph of the torque x as a function of the angle «, y(a), during

one operation cycle. Write down explicitly the values of y(a) at angle ai, ap, and

o =0.
2.2. From the graph found in section 2.1., discuss and give the geometric

interpretation of the value of the total energy W, produced by y(a)and the work

w

pounding

that is transferred from the pestle to the rice.

2.3. From the graph representing x versus «, estimate «, and W

bounding (assume

the kinetic energy of water flowing into the bucket and out of the bucket is negligible.)
You may replace curve lines by zigzag lines, if it simplifies the calculation.

3. The rest mode
Let water flow into the bucket with a constant rate @, but one cannot neglect the
amount of water flowing into the bucket during the motion of the lever.
3.1. Assuming the bucket is always overflown with water,
3.1.1. Sketch a graph of the torque x as a function of the angle « in the
vicinity of a = £ . To which kind of equilibrium does the position « = of the lever
belong?

3.1.2. Find the analytic form of the torque () as a function of Aa when

a=pF+Aa,and Aa issmall.

3.1.3. Write down the equation of motion of the lever, which moves with zero
initial velocity from the position o =+ Aa (A« is small). Show that the motion is,

with good accuracy, harmonic oscillation. Compute the period 7.
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3.2. At a given @, the bucket is overflown with water at all times only if the lever
moves sufficiently slowly. There is an upper limit on the amplitude of harmonic

oscillation, which depends on @ . Determine the minimal value @,of ® (in kg/s) so

that the lever can make a harmonic oscillator motion with amplitude 1°.
3.3. Assume that @ is sufficiently large so that during the free motion of the lever

when the tilting angle decreases from «, toe, the bucket is always overflown with

water. However, if @ is too large the mortar cannot operate. Assuming that the motion

of the lever is that of a harmonic oscillator, estimate the minimal flow rate ®, for the

rice-pounding mortar to not work.
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CHERENKOV LIGHT AND RING IMAGING COUNTER

Light propagates in vacuum with the speed C. There is no particle which moves with
a speed higher than C. However, it is possible that in a transparent medium a particle

C
moves with a speed V higher than the speed of the light in the same medium —, where
n

N is the refraction index of the medium. Experiment (Cherenkov, 1934) and theory
(Tamm and Frank, 1937) showed that a charged particle, moving with a speed V in a

transparent medium with refractive index
c . .

N such that v >—, radiates light, called
n

Cherenkov light, in directions forming

with  the  trajectory an  angle A 0 B
1
6 =arccos— 1
s (1) 0
where [ = !.
c

. . . . . . c
1. To establish this fact, consider a particle moving at constant velocity V>— on a
n

straight line. It passes A at time 0 and B at time ;. As the problem is symmetric with

respect to rotations around AB, it is sufficient to consider light rays in a plane containing
AB.
At any point C between A and B, the particle emits a spherical light wave, which

. .. C . .
propagates with velocity —. We define the wave front at a given time t as the envelope
n
of all these spheres at this time.
1.1. Determine the wave front at time t, and draw its intersection with a plane

containing the trajectory of the particle.
1.2. Express the angle ¢ between this intersection and the trajectory of the particle

interms of N and f.
. . . . . c
2. Let us consider a beam of particles moving with velocity vV > —, such that the angle
n

0 is small, along a straight line IS. The beam crosses a concave spherical mirror of focal
length f and center C, at point S. SC makes with SI a small angle « (see the figure in

the Answer Sheet). The particle beam creates a ring image in the focal plane of the mirror.
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Explain why with the help of a sketch illustrating this fact. Give the position of the center
O and the radius I of the ring image.

This set up is used in ring imaging Cherenkov counters (RICH) and the medium which
the particle traverses is called the radiator.

Note: in all questions of the present problem, terms of second order and higher in «

and @ will be neglected.

3. A beam of particles of known momentum P =10.0 GeV/C consists of three types of

particles: protons, kaons and pions, with rest mass Mp=0.94 GeV/c? ,

M_=0.50GeV/c* and M_=0.14 GeV/c’, respectively. Remember that pc and

Mc? have the dimension of an energy, and 1 eV is the energy acquired by an electron
after being accelerated by a voltage 1 V, and 1 GeV =10"¢eV, 1 MeV = 10° eV.

The particle beam traverses an air medium (the radiator) under the pressure P. The
refraction index of air depends on the air pressure P according to the relation
n=1+aP where a=2.7x10" atm”

3.1. Calculate for each of the three particle types the minimal value P_. of the air

pressure such that they emit Cherenkov light.

3.2. Calculate the pressure P, such that the ring image of kaons has a radius equal

2
to one half of that corresponding to pions. Calculate the values of 6  and 6 in this

casc.

Is it possible to observe the ring image of protons under this pressure?

4. Assume now that the beam is not perfectly monochromatic: the particles momenta are
distributed over an interval centered at 10 GeV/C having a half width at half height
Ap. This makes the ring image broaden, correspondingly & distribution has a half

width at half height A@. The pressure of the radiator is P, determined in 3.2.
2

A6 AO
4.1. Calculate £ and ~, the values taken by ——in the pions and kaons
Ap Ap A

cascs.

4.2. When the separation between the two ring images, & —6,, is greater than 10
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times the half-width sum A@=A0_+AQ,_, thatis 6 -6, >10 A8, it is possible to

distinguish well the two ring images. Calculate the maximal value of Ap such that the

two ring images can still be well distinguished.

5. Cherenkov first discovered the effect bearing his name when he was observing a bottle
of water located near a radioactive source. He saw that the water in the bottle emitted
light.

5.1. Find out the minimal kinetic energy T_. of a particle with a rest mass M

mn

moving in water, such that it emits Cherenkov light. The index of refraction of water is
n=1.33.

5.2. The radioactive source used by Cherenkov emits either o particles (i.e. helium

nuclei) having a rest mass M =3.8 GeV/ ¢® or P particles (i.e. electrons) having a

rest mass M_=0.51 MeV/c’. Calculate the numerical values of T_. for o particles

and 3 particles.

Knowing that the kinetic energy of particles emitted by radioactive sources never
exceeds a few MeV, find out which particles give rise to the radiation observed by

Cherenkov.

6. In the previous sections of the problem, the dependence of the Cherenkov effect on
wavelength A has been ignored. We now take into account the fact that the Cherenkov
radiation of a particle has a broad continuous spectrum including the visible range
(wavelengths from 0.4 um to 0.8 pum). We know also that the index of refraction N of
the radiator decreases linearly by 2% of Nn—1 whenA increases over this range.

6.1. Consider a beam of pions with definite momentum of 10.0 GeV/C moving in
air at pressure 6 atm. Find out the angular difference 06 associated with the two ends
of the visible range.

6.2. On this basis, study qualitatively the effect of the dispersion on the ring image of
pions with momentum distributed over an interval centered at p=10 GeV/C and
having a half width at half height Ap = 0.3 GeV/cC.

6.2.1. Calculate the broadening due to dispersion (varying refraction index) and
that due to achromaticity of the beam (varying momentum).
6.2.2. Describe how the color of the ring changes when going from its inner to

outer edges by checking the appropriate boxes in the Answer Sheet.
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CHANGE OF AIR TEMPERATURE WITH ALTITUDE,
ATMOSPHERIC STABILITY AND AIR POLLUTION

Vertical motion of air governs many atmospheric processes, such as the formation of
clouds and precipitation and the dispersal of air pollutants. If the atmosphere is stable,
vertical motion is restricted and air pollutants tend to be accumulated around the
emission site rather than dispersed and diluted. Meanwhile, in an unstable atmosphere,
vertical motion of air encourages the vertical dispersal of air pollutants. Therefore, the
pollutants’ concentrations depend not only on the strength of emission sources but also
on the stability of the atmosphere.

We shall determine the atmospheric stability by using the concept of air parcel in
meteorology and compare the temperature of the air parcel rising or sinking adiabatically
in the atmosphere to that of the surrounding air. We will see that in many cases an air
parcel containing air pollutants and rising from the ground will come to rest at a certain
altitude, called a mixing height. The greater the mixing height, the lower the air pollutant
concentration. We will evaluate the mixing height and the concentration of carbon
monoxide emitted by motorbikes in the Hanoi metropolitan area for a morning rush
hour scenario, in which the vertical mixing is restricted due to a temperature inversion
(air temperature increases with altitude) at elevations above 119 m.

Let us consider the air as an ideal diatomic gas, with molar mass # =29 g/mol.

Quasi equilibrium adiabatic transformation obey the equation pV’” = const, where

C
y = —P s the ratio between isobaric and isochoric heat capacities of the gas.

Cy

The student may use the following data if necessary:

The universal gas constant is R = 8.31 J/(mol.K).
The atmospheric pressure on ground is P, =101.3 kPa

The acceleration due to gravity is constant, ¢ =9.81 m/s’

7
The molar isobaric heat capacity is C, = E R for air.

5
The molar isochoric heat capacity is C, = 5 R for air.
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Mathematical hints
I B _I A+ Bx
A+ Bx A+ Bx

1
=—In( A+ Bx
Lin(a+ 81
dx
b. The solution of the differential equation pr + Ax=B (with A and B constant) is

B dx
X(t) =X (t) +— where X (t) is the solution of the differential equation — + AX=0.
A 1 dt

X
c. lim (1+1J =e
: X—>0 -
X

1. Change of pressure with altitude.
1.1. Assume that the temperature of the atmosphere is uniform and equal to T,.

Write down the expression giving the atmospheric pressure P as a function of the
altitude z .

1.2. Assume that the temperature of the atmosphere varies with the altitude according
to the relation

T(z)=T(0)-Az

where A is a constant, called the temperature lapse rate of the atmosphere (the vertical
gradient of temperature is - A).

1.2.1. Write down the expression giving the atmospheric pressure P as a
function of the altitude z.

1.2.2. A process called free convection occurs when the air density increases with

altitude. At which values of A does the free convection occur?

2. Change of the temperature of an air parcel in vertical motion

Consider an air parcel moving upward and downward in the atmosphere. An air
parcel is a body of air of sufficient dimension, several meters across, to be treated as an
independent thermodynamical entity, yet small enough for its temperature to be
considered uniform. The vertical motion of an air parcel can be treated as a quasi
adiabatic process, i.e. the exchange of heat with the surrounding air is negligible. If the
air parcel rises in the atmosphere, it expands and cools. Conversely, if it moves
downward, the increasing outside pressure will compress the air inside the parcel and its
temperature will increase.

As the size of the parcel is not large, the atmospheric pressure at different points on
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the parcel boundary can be considered to have the same value p(Z), with Z- the

altitude of the parcel center. The temperature in the parcel is uniform and equals to

Tparcel(z), which is generally different from the temperature of the surrounding air

T (Z) In parts 2.1 and 2.2, we do not make any assumption about the form of T(z).

2.1. The change of the parcel temperature T ., with altitude is defined by

parce

dT
parcel _ _ G Derive the expression of G (T, Tparcel)-
dz

2.2. Consider a special atmospheric condition in which at any altitude z the

temperature T of the atmosphere equals to that of the parcel T .., T (Z) =T (Z) )

— " parcel

dT
that is I =——paed

We use I' to denote the value of G when T=T,. .,
dz

(withT =T, ). I' is called dry adiabatic lapse rate.

2.2.1. Derive the expression of I

2.2.2. Calculate the numerical value of I'.
2.2.3. Derive the expression of the atmospheric temperature T (Z)as a function

of the altitude.

2.3. Assume that the atmospheric temperature depends on altitude according to the

relation T (Z) =T (O) — Az, where A isa constant. Find the dependence of the parcel
temperature T (z) onaltitude z.

2.4. Write down the approximate expression of T, (Z) when ‘AZ‘ <<T (O) and

T(0) = Tparcel(0).

3. The atmospheric stability.
In this part, we assume that T changes linearly with altitude.

3.1. Consider an air parcel initially in equilibrium with its surrounding air at altitude
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Z,, i.e. it has the same temperature T (ZO) as that of the surrounding air. If the parcel is

moved slightly up and down (e.g. by atmospheric turbulence), one of the three following

cases may occur:
- The air parcel finds its way back to the original altitude Z,, the equilibrium of

the parcel is stable. The atmosphere is said to be stable.

- The parcel keeps moving in the original direction, the equilibrium of the parcel
is unstable. The atmosphere is unstable.

- The air parcel remains at its new position, the equilibrium of the parcel is
indifferent. The atmosphere is said to be neutral.

What is the condition on A for the atmosphere to be stable, unstable or neutral?

3.2. A parcel has its temperature on ground T (O) higher than the temperature

T (0) of the surrounding air. The buoyancy force will make the parcel rise. Derive the

expression for the maximal altitude the parcel can reach in the case of a stable
atmosphere in terms of A and T.

4. The mixing height
4.1. Table 1 shows air temperatures recorded by a radio sounding balloon at 7: 00 am

on a November day in Hanoi. The change of temperature with altitude can be

approximately described by the formula T (Z) =T (0) — Az with different lapse rates A

in the three layers 0 <Z2<96m, 96 m<zZ<119mand 119 m<z<215m.

Consider an air parcel with temperature T (O)= 22°C ascending from ground.

On the basis of the data given in Table 1 and using the above linear approximation,
calculate the temperature of the parcel at the altitudes of 96 m and 119 m.

4.2. Determine the maximal elevation H the parcel can reach, and the temperature

Toarcel ( H ) of the parcel.

H is called the mixing height. Air pollutants emitted from ground can mix with the
air in the atmosphere (e.g. by wind, turbulence and dispersion) and become diluted
within this layer.
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Table 1

Data recorded by a radio sounding balloon at 7:00 am on a November day in Hanoi.

Altitude, m Temperature, °C
5 21.5
60 20.6
64 20.5
69 20.5
75 204
81 20.3
90 20.2
96 20.1
102 20.1
109 20.1
113 20.1
119 20.1
128 20.2
136 20.3
145 20.4
153 20.5
159 20.6
168 20.8
178 21.0
189 21.5
202 21.8
215 22.0
225 221
234 22.2
246 22.3
257 22.3

5. Estimation of carbon monoxide (CO) pollution during a morning motorbike rush
hour in Hanoi.

Hanoi metropolitan area can be approximated by a rectangle with base
dimensions L and W as shown in the figure, with one side taken along the south-west
bank of the Red River.
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It is estimated that during the morning rush hour, from 7:00 am to 8:00 am, there are
8x10° motorbikes on the road, each running on average 5 km and emitting 12 g of CO
per kilometer. The amount of CO pollutant is approximately considered as emitted
uniformly in time, at a constant rate M during the rush hour. At the same time, the clean
north-east wind blows perpendicularly to the Red River (i.e. perpendicularly to the sides
L of the rectangle) with velocity u, passes the city with the same velocity, and carries a
part of the CO-polluted air out of the city atmosphere.

Also, we use the following rough approximate model:

e The CO spreads quickly throughout the entire volume of the mixing layer

above the Hanoi metropolitan area, so that the concentration C (t)of CO attime t can

be assumed to be constant throughout that rectangular box of dimensions L, W and H.

e The upwind air entering the box is clean and no pollution is assumed to be
lost from the box through the sides parallel to the wind.

e Before 7:00 am, the CO concentration in the atmosphere is negligible.

5.1. Derive the differential equation determining the CO pollutant concentration

C (t) as a function of time.
5.2. Write down the solution of that equation for C (t) .

5.3. Calculate the numerical value of the concentration C (t) at 8:00 a.m.

Given L=15km, W=8km, U =1 m/s.



