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3−= =

 
Solution 

 
1. The structure of the mortar 
 1.1. Calculating the distance TG 

The volume of water in the bucket is V . The length of the 

bottom of the bucket is . 

3 31000cm 10 m

0 060 0 74 0 12 60 m 0 5322mtan ( . . tan ) .d L h= − = − =

(as the initial data are given with two significant digits, we shall keep only two 
significant digits in the final answer, but we keep more digits in the intermediate steps). 
The height  of the water layer in the bucket is calculated from the formula: c

2 1/ 2b0 ( 2 3 / )tan 60
2 3
c d V dV bcd b c c + −

= + ⇒ =  

Inserting numerical values for ,  and , we find b d 0.01228mc =V . 
When the lever lies horizontally, the distance, on the horizontal axis, between the rotation 

axis and the center of mass of water N, is oTH 60 0 4714m
2 4

tan .d ca≈ + + = , and 

(see the figure below). TG ( / )TH 0.01571mm M= =
 

H                     T  

N 

 

 

K 

R 

S P 

 

 

 

 
Answer: . TG 0.016m=
 

α1 α2 1.2. Calculating the values of  and . 
α1  When the lever tilts with angle , water level is at the edge of the bucket. At that 

point the water volume is . Assume 3 310 m− PQ d< . From geometry , 

from which P . The assumption 

PQ / 2V hb= ×

PQ d<Q 0.1111m= is obviously satisfied 
( ). 0.5322md =

QS= PQ+ 3tan / /( ).h h hα1 =α1To compute the angle , we note that  From this 

we find . o20.6α1 =
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When the tilt angle is , the bucket is empty: . o30 o30α2 =

                                                                   G 

                                            h                 T    

 

R               N            

                             Q 

                   P 
I

S 

 

 

 

 

 

 

 

 

 

 

 
β 1.3. Determining the tilt angle  of the lever and the amount of water in the bucket 

 m μwhen the total torque  on the lever is equal to zero 
(m)x= Denote PQ . The amount of water in the bucket is 

water 9 (kg)
2

xhbm xρ= = .  

μ = 0  when the torque coming from the water in the bucket cancels out the torque 
coming from the weight of the lever. The cross section of the water in the bucket is the 
triangle PQR in the figure. The center of mass N of water is located at 2/3 of the meridian 
RI, therefore NTG lies on a straight line. Then: TN TGmg Mg× = ×  or 

TN TG 30 0.1571 0.4714m M× = × = × =       (1)  
Calculating  from x then substitute (1) : TN

2TN ( 3 ) 0.94 0.08 3 0.8014
3 2 3 3

x x xL a h= + − + = − − = −  

which implies     (2) 2TN 9 (0.8014 / 3) 3 7.213m x x x× = − = − + x

xSo we find an equation for : 
                 (3) 23 7.213 0.4714x x− + =

2.337x = 0.06723x = xThe solutions to (3) are and . Since  has to be smaller than 
0.5322, we have to take  and m x0 0.06723x x= = 09 0.6051kg= = .    

0 4362
3

tan .h
x h

β = =
+

o7β = 23.5, or  .  

Answer:  and . oβ = 23.60.61kgm =

 
2. Parameters of the working mode 
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)tα( )tμ( 2.1.Graphs of μ α( )  during one operation cycle.  , , and
μα = 0 Initially when there is no water in the bucket, ,  has the largest magnitude 

equal to . Our convention will be that 
the sign of this torque is negative as it tends to decrease 

TG 30 9.81 0.01571 4.624 N mgM × = × × = ⋅
α . 

As water flows into the bucket, the torque coming from the water (which carries 
positive sign) makes μ μ increase until  is slightly positive, when the lever starts to 
lift up. From that moment, by assumption, the amount of water in the bucket is constant. 
 The lever tilts so the center of mass of water moves away from the rotation axis, 
leading to an increase of μ , which reaches maximum when water is just about to 

overflow the edge of the bucket. At this moment .  o20.6α α1= =

 A simple calculation shows that 
  . SI SP PQ / 2 0.12 1.732 0.1111/ 2 0.2634m= + = × + =

2TN 0.20 0.74 SI 0.7644m
3

= + − =  . 

    o
max 1 0 TN 30 TG 20.6( . ) cosgμ = × − ×

      = o1 0 0 7644 30 0 01571 9 81 20 6 2 690 N m( . . . ) . cos . .× − × × × = ⋅ .  

max 2.7 N mμ = ⋅ . Therefore 
 As the bucket tilts further, the amount of water in the bucket decreases, and when 

μα β= μ = 0, . Due to inertia, α  keeps increasing and  keeps decreasing. The 

bucket is empty when oα = 30 μ, when  equals  

. After that o30 TG 30 4 0 N mcos .g− × × × = − ⋅ α  keeps increasing due to inertia to 

TG 2 N mcos cosgMμ α α0= − = −4.6 ⋅α0  ( 0 ), then quickly decreases to 0 

( 2 N mμ = −4.6 ⋅ ).  
)tα( ( )tμ μ α( ) On this basis we can sketch the graphs of , , and  as in the figure 

below 
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 is dW dμ α α= ( )μ α( ) 2.2. The infinitesimal work produced by the torque . The 
energy obtained by the lever during one cycle due to the action of 

-4.0 N.m                           C 

-4.6 N.m  F 

O                           E   α 
B    30o     α0 

     μ 
2.7 N.m                A 

20.6o 

 23.6o 

-4.6 cosα0 N.m                           D 

μ α( )  is 

( )W dμ α α= ∫ , which is the area limited by the line μ α( ) . Therefore  is equal 

to the area enclosed by the curve

totalW

μ α( ) (OABCDFO) on the graph . 
   The work that the lever transfers to the mortar is the energy the lever receives as it 

moves from the position poundingWoα α= α = 0 to the horizontal position . We have  

μ α( )equals to the area of (OEDFO) on the graph . It is equal to 

0 0TG 4 6sin . singM α α× × =   (J).  

0α  2.3. The magnitudes of  can be estimated from the fact that at point D the energy 
of the lever is zero. We have   

area (OABO) = area (BEDCB) 
Approximating OABO by a triangle, and BEDCB by a trapezoid, we obtain:  

23.6 2.7 (1/ 2) 4.0 [( 23.6) ( 30)] (1/ 2)α α0 0× × = × − + − × , 

which implies . From this we find  o34.7α0 =

0

34 76

TG
.

cosMg dα α− × ×∫poundingW  =  o4 62 34 7 2 63. sin . .× == area (OEDFO) = 



                     39th International Physics Olympiad - Hanoi - Vietnam - 2008 
                                                             
                              Theoretical Problem No. 1 /Solution  
  

 5

Thus we find  J. pounding 2.6W ≈ μ 

β                 α

3. The rest mode 
 3.1.  
  3.1.1. The bucket is always overflown 
with water. The two branches of μ α( )  in the 
vicinity of α β=  corresponding to 
increasing and decreasing α coincide with 
each other. 

α β= The graph implies that  is a stable 
equilibrium of the mortar.  

μ α β α= + Δ  3.1.2. Find the expression for the torque  when the tilt angle is  
( αΔ  is small ). 
 The mass of water in bucket when the lever tilts with angle α  is 

0
1 1PQ

30tan tan
h

α
⎛= −⎜
⎝ ⎠

⎞
⎟(1/ 2) PQm bhρ= , where . A simple calculation shows that 

when α β β α+ Δ increases from  to , the mass of water increases by 

2 2

2 22 2sin sin
bh bhm ρ ρα α

α β
Δ = − Δ ≈ − Δ μ. The torque  acting on the lever when the tilt 

is mΔβ α+ Δ  equals the torque due to .  

( )TN cosm gμ β α= Δ × × × + Δ We have . TN is found from the equilibrium 

condition of the lever at tilting angle β :   
 . TN TG / 30 0.01571/ 0.605 0.779mM m= × = × =

N m N mμ α α= −47.2×Δ ⋅ ≈ −47×Δ ⋅ .    We find at the end 
   3.1.3. Equation of motion of the lever 

2

2
dI
dt
αμ =  where μ α= −47×Δ , α β α= + Δ , and  is the sum of moments 

of inertia of the lever and of the water in bucket relative to the axis T. Here  is not 
constant the amount of water in the bucket depends on 

I

I
αΔα . When  is small, one can 

consider the amount and the shape of water in the bucket to be constant, so  is 
approximatey a constant. Consider water in bucket as a material point with mass 0.6 kg, a 

simple calculation gives . We have 

I

2 212 0.6 0.78 12.36 12.4 kg mI = + × = ≈

2

247 12.4 d
dt
αα Δ

− ×Δ = × . That is the equation for a harmonic oscillator with period  
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12.42 3
47

τ π= = .227 . The answer is therefore 2sτ = 3. . 

α β= 3.2. Harmonic oscillation of lever (around ) when bucket is always overflown. 
Assume the lever oscillate harmonically with amplitude α0Δ  around α β= . At time 

, 0t = αΔ = 0 , the bucket is overflown. At time  the tilt changes by dt dα . We are 
interested in the case dα < 0 , i.e., the motion of lever is in the direction of decreasing 
α , and one needs to add more water to overflow the bucket. The equation of motion is: 

0 2sin( / )tα α πΔ = −Δ τ dt0 2 2( ) ( / )cos( / )d d tα α α π τ π τΔ = = −Δ, therefore . 

 For the bucket to be overflown, during this time the amount of water falling to the 

bucket should be at least  
22

0
2 2

2 2
2 2

cos
sin sin

bh dtbh tdm d α π ρρ πα
τβ τ β

Δ ⎛ ⎞= − = ⎜
⎝ ⎠

⎟  ; is 

maximum at ,  

dm

2
0

0 2sin
bhdm dtπ ρ α
τ β

Δ
=0t = . 

 The amount of water falling to the bucket is related to flow rate ; , 0dm dt= ΦΦ

2
0

2sin
bhπ ρ α
τ β

Δ
Φ =therefore .  

 An overflown bucket is the necessary condition for harmonic oscillations of the lever, 
therefore the condition for the lever to have harmonic oscillations with ampltude  or o1

2π/360 rad is  with  1Φ ≥ Φ

2

1 2
2 0 2309kg/s

360
.

sin
bhπ ρ π
τ β

Φ = =       

 So . 0.23kg/s1Φ =
 
 3.3 Determination of  2Φ

 If the bucket remains overflown when the tilt decreases to ,o20.6  then the amount of 
water in bucket should reach 1 kg at this time, and the lever oscillate harmonically with 

amplitude equal o o20.6 3o23.6 − = 3 1Φ. The flow should exceed , therefore   

  . 3 0.23 .7kg/s2Φ = × ≈ 0
 This is the minimal flow rate for the rice-pounding mortar not to work. 
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Solution 

 
 
1. 
 
 
                                                                                 
                                                                                    
                           
 
 
 
                                                                                     
                                                                                 

A

θ

C B

D

E

D’

 
Figure 1 

                                           
Let us consider a plane containing the particle trajectory. At , the particle 

position is at point A. It reaches point B at 

0t =

1t t= . According to the Huygens principle, at 

moment , the radiation emitted at A reaches the circle with a radius equal to AD 

and the one emitted at C reaches the circle of radius CE. The radii of the spheres are 
proportional to the distance of their centre to B: 

10 t t< <

( )
( )
1

1

CE 1 const
CB

/c t t n
t t nβ
−

= = =
−v

 

The spheres are therefore transformed into each other by homothety of vertex B and 

their envelope is the cone of summit B and half aperture 
1

2
Arcsin

n
πϕ θ

β
= = − , 

where θ  is the angle made by the light ray CE with the particle trajectory.  
1.1. The intersection of the wave front with the plane is two straight lines, BD and 

BD'. 

1.2. They make an angle 
1Arcsin
n

ϕ
β

= with the particle trajectory.  
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2. The construction for finding the ring image of the particles beam is taken in the plane  
containing the trajectory of the particle and the optical axis of the mirror.  

We adopt the notations: 
S – the point where the beam crosses the spherical mirror 

 F – the focus of the spherical mirror  
 C – the center of the spherical mirror 
 IS – the straight-line trajectory of the charged particle making a small angle α with 
the optical axis of the mirror. 
 
 
 
 
 
 
 
 
 
 
      
 

 
 

I 

θ

θ

CF

O

M

N
S

α 

A 

P 

Q 

Figure 2 
  CF = FS = f 
  CO//IS 
  CM//AP 
  CN//AQ 

  FCO α= ⇒FO f α= ×  

  MCO OCN θ= = ⇒MO f θ= ×  

 We draw a straight line parallel to IS passing through the center C. The line intersects 
the focal plane at O. We have FO ≈ f × α  . 
 Starting from C, we draw two lines in both sides of the line CO making with it an 
angle θ. These two lines intersect the focal plane at M and N, respectively. All the rays of 
Cherenkov radiation in the plane of the sketch, striking the mirror and being reflected, 
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intersect at M or N. 
 In three-dimension case, the Cherenkov radiation gives a ring in the focal plane with 
the center at O (FO ≈ f × α) and with the radius MO ≈ f × θ.  
 In the construction, all the lines are in the plane of the sketch. Exceptionally, the ring 
is illustrated spatially by a dash line.  
 
3. 

 3.1. For the Cherenkov effect to occur it is necessary that 
cn >
v

 , that is  

min
cn =
v

. 

Putting ,  we get      41 2 7 10.n −ζ = − = × P

  4
min min

12 7 10 1 1. cPζ
β

−= × = − = −
v

            (1)                   

Because 

22

2

1

1

Mc Mc Mc KMvpc p
β

β
β

−
= = = =

−

                       (2)                   

then K = 0.094 ; 0.05 ; 0.014 for proton, kaon and pion, respectively. 
 From (2) we can express β through K as 

        
2

1

1 K
β =

+
                     (3)                  

Since  for all three kinds of particles we can neglect the terms of order 
higher than 2 in K . We get 

2 1K <<

     2
2

1 11 1
21

K
K

β− = − ≈
+

= 
2

1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

                        (3a) 

    2 21 11 1 1
2

K K
β
− = + − ≈ =

2
1
2

Mc
p

⎛ ⎞
⎜ ⎟
⎝ ⎠

           (3b)  

                            
 Putting (3b) into (1), we obtain 
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      2
min 4

1 1
22 7 10.

P −= ×
×

K

κ

                                (4) 

 
 We get the following numerical values of the minimal pressure:   

minP = 16 atm      for protons, 

minP = 4.6 atm     for kaons, 

minP = 0.36 atm     for pions. 

 3.2. For π 2θ θ=   we have 

                  (5)                   2
π κ κ2 2cos cos cosθ θ θ= = 1−

We denote  

     2
2

1 11 1
21

K
K

ε β= − = − ≈
+

            (6)                   

From (5) we obtain 

      2 2
π κ

1 2 1
n nβ β
= −                                (7)                   

Substituting 1β ε= −  and 1n ζ= +  into (7), we get approximately: 
                                           

      ( )2 2 2 2κ π
1 κ π
2

4 1 14 4 0 05 0 014
3 6 6

.( . ) ( . )K Kε ε
ζ

− ⎡ ⎤= = − = −⎣ ⎦ , 

      1 14
2 2

1 6 atm
2 7 10.

P −= ζ =
×

. 

 The corresponding value of refraction index is n = 1.00162. We get: 

       κθ  = 1.6o ;        . o
π κ2 3 2.θ θ= =

We do not observe the ring image of protons since 
        1 m

2

6atm 16atm inP P= < =  for protons. 
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4. 
 4.1. Taking logarithmic differentiation of both sides of the equation            

1cos
n

θ
β

= , we obtain 

       
sin

cos
θ θ
θ
×Δ

 = 
β
β
Δ

               (8)      

                                                      
 Logarithmically differentiating equation (3a) gives 

       2
1

p
p

β
β

Δ Δ
=

−
                  (9)                   

 Combining (8) and (9), taking into account (3b) and putting approximately 
tanθ θ= , we derive 

       
22 1 K

p p
θ β

pθ β θ
Δ −

= × =
Δ

                (10)                 

 
 We obtain 

 -for kaons  ,  κ 0 05.K = o
κ 1 6 1 6 rad

180
. . πθ = = , and so,  

o
κ 10 51

GeV
.

/p c
θΔ

=
Δ

, 

 -for pions π 0 014.K = , , and             o
π 3 2.θ =

o
π 10 02

GeV
.

/p c
θΔ

=
Δ

 . 

 4.2.  κ π

p
θ θΔ + Δ

≡
Δ

( )
o o1 10 51 0 02 0 53

GeV GeV
. . .

/ /p c c
θΔ
= + =

Δ
. 

 The condition for two ring images to be distinguishable is 

. o
π κ0 1 0 16. ( ) .θ θ θΔ < − =

 It follows  
1 1 6 0 3 GeV

10 0 53
. . /
.

p cΔ < × = . 
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5.  
 5.1. The lower limit of β  giving rise to Cherenkov effect is 

    
1 1

1 33.n
β = = .                                           (11) 

 The kinetic energy of a particle having rest mass M  and energy E  is given by the 
expression 

       
2

2 2 2
2 2

1 1
1 1

McT E Mc Mc Mc
β β

⎡ ⎤
⎢ ⎥= − = − = −
⎢ ⎥− −⎣ ⎦

.     (12) 

Substituting the limiting value (11) of β  into (12), we get the minimal kinetic energy of 
the particle for Cherenkov effect to occur: 

  2 2
min 2

1 1 0 517
11

1 33

.

.

T Mc M

⎡ ⎤
⎢ ⎥
⎢ ⎥= − =⎢ ⎥

⎛ ⎞⎢ ⎥− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

c        (13) 

                                  
 5.2.  

 For α particles, . min 0 517 3 8 GeV 1 96 GeV. . .T = × =

 For electrons,  . min 0 517 0 51 MeV 0 264 MeV. . .T = × =

 Since the kinetic energy of the particles emitted by radioactive source does not 
exceed a few MeV, these are electrons which give rise to Cherenkov radiation in the 
considered experiment. 
 
6. For a beam of particles having a definite momentum the dependence of the angle θ  
on the refraction index  of the medium is given by the expression n

     
1cos

n
θ

β
=                  (14)               

 6.1. Let δθ  be the difference of θ  between two rings corresponding to two 
wavelengths limiting the visible range, i.e. to wavelengths of 0.4 µm (violet) and     
0.8 µm (red), respectively. The difference in the refraction indexes at these wavelengths 

is ( )v r 0 02 1.n n nδ n− = = − . 

    Logarithmically differentiating both sides of equation (14) gives 
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sin

cos
n

n
θ δθ δ
θ
×

=                                       (15)        

 Corresponding to the pressure of the radiator P = 6 atm we have from 4.2. the values            

πθ = 3.2o , 1.00162.  n =

 Putting approximately tanθ θ=   and  n = 1, we get  o0 033.nδδθ
θ

= = .        

 6.2.  
 6.2.1. The broadening due to dispersion in terms of half width at half height is, 

according to (6.1), o1 0 017
2

.δθ = . 

 6.2.2. The broadening due to achromaticity is, from 4.1., 

o
o10 02 0 3 GeV/c 0 006

GeV/c
. .× = . , that is three times smaller than above. 

    6.2.3. The color of the ring changes from red to white then blue from the inner 
edge to the outer one. 
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1. For an altitude change , the atmospheric pressure change is : dz
         dp gdzρ= −                                        (1) 
where  is the acceleration of gravity, considered constant, g ρ  is the specific mass of 
air,  which is considered as an ideal gas: 

                         
m p
V RT

μρ = =  

Put this expression in (1) : 

                         
dp g dz
p RT

μ
= −  

 1.1. If the air temperature is uniform and equals , then 0T

                         
0

dp g dz
p RT

μ
= −  

After integration, we have : 

          ( ) ( ) 00 e
g z

RTp z p
μ

−
=                                (2) 

 1.2. If 

           ( ) ( )0T z T z= −Λ                           (3) 

then 

 
( )0

dp g dz
p R T z

μ
= −

⎡ ⎤− Λ⎣ ⎦
               (4)                      

  1.2.1. Knowing that : 

         
( )

( )
( ) ( )( )01 1 0

0 0
ln

d T zdz T z
T z T z

⎡ ⎤− Λ⎣ ⎦= − = − − Λ
−Λ Λ −Λ Λ∫ ∫    

by integrating both members of (4), we obtain : 

          
( )
( )

( )
( ) ( )

0
1

0 0
ln ln ln

p z T zg g
p R T R T

μ μ ⎛ ⎞− Λ Λ
= = ⎜⎜Λ Λ ⎝ ⎠0

z
− ⎟⎟                                 

          ( ) ( ) ( )
0 1

0

g
Rzp z p

T

μ
Λ⎛ ⎞Λ

= −⎜⎜
⎝ ⎠

⎟⎟                    (5) 

 1
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1.2.2. The free convection occurs if: 

           
( )
( )

1
0
zρ

ρ
>  

The ratio of specific masses can be expressed as follows: 

   
( )
( )

( )
( )

( )
( ) ( )

1
0

1
0 0 0

g
Rz p z T z

p T z T

μ

ρ
ρ

−
Λ⎛ ⎞Λ

= = −⎜ ⎟⎜ ⎟
⎝ ⎠

  

       The last term is larger than unity if its exponent is negative: 

    1 0g
R
μ

− <
Λ

 

 Then : 

          
0 029 9 81 K0 034

8 31 m
. . .

.
g

R
μ ×

Λ > = =  

 
2. In vertical motion, the pressure of the parcel always equals that of the surrounding air, 

the latter depends on the altitude. The parcel temperature parcelT  depends on the 

pressure. 
 
 2.1. We can write: 

        parcel parceldT dT dp
dz dp dz

=  

p  is simultaneously the pressure of air in the parcel and that of the surrounding air. 

Expression for parceldT
dp

 

By using the equation for adiabatic processes  and equation of state, 

we can deduce the equation giving the change of pressure and temperature in a 
quasi-equilibrium adiabatic process of an air parcel: 

constpV γ =

        
1

parcel constT p
γ
γ
−

=                                 (6) 

 2
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where  p

V

c
c

γ =  is the ratio of isobaric and isochoric thermal capacities of air. By 

logarithmic differentiation of the two members of (6), we have:                                  

         parcel

parcel

1 0
dT dp
T p

γ
γ
−

+ =  

Or 

       parcel parcel 1dT T
dp p

γ
γ
−

=                             (7) 

Note: we can use the first law of thermodynamic to calculate the heat received by the 

parcel in an elementary process: parcelV
mdQ c dT pdV
μ

= + , this heat equals zero in an 

adiabatic process. Furthermore, using the equation of state for air in the parcel 

parcel
mpV RT
μ

=  we can derive (6) 

Expression for 
dp
dz

           

From (1) we can deduce: 

            
dp pgg
dz RT

μρ= − = −  

where is the temperature of the surrounding air. T

On the basis of these two expressions, we derive the expression for  : parcel /dT dz

          parcel parcel1dT Tg G
dz R T

γ μ
γ
−

= − = −                      (8) 

In general,  is not a constant. G
 
 2.2.  

2.2.1. If at any altitude, parcelT T= , then instead of  in (8), we have : G

        
1 constg

R
γ μ
γ
−

Γ = =                        (9) 

or  

 3
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p

g
c
μ

Γ =                (9’) 

2.2.2. Numerical value: 

         21 4 1 0 029 9 81 K K0 00978 10
1 4 8 31 m m
. . . .

. .
−− ×

Γ = = ≈     

  2.2.3. Thus, the expression for the temperature at the altitude  in this special 
atmosphere (called adiabatic atmosphere) is : 

z

         ( ) ( )0T z T z= −Γ                          (10) 

 2.3. Search for the expression of ( )parcelT z  

Substitute  in (7) by its expression given in (3), we have: T

         
( )

parcel

parcel

1
0

dT g dz
T R T

γ μ
γ
−

= −
z−Λ

 

Integration gives: 

         
( )
( )

( )
( )

parcel

parcel

01 1
0 0

ln ln
T z T zg
T R T

−γ μ
γ

Λ− ⎛ ⎞= − −⎜ ⎟Λ⎝ ⎠
 

Finally, we obtain: 

        ( ) ( ) ( )
( )parcel parcel

0
0

0
T z

T z T
T

Γ
Λ⎛ ⎞− Λ

= ⎜ ⎟⎜ ⎟
⎝ ⎠

                 (11) 

 2.4.  
 From (11) we obtain  

 ( ) ( ) ( )parcel parcel 0 1
0
zT z T

T

Γ
Λ⎛ ⎞Λ

= −⎜ ⎟⎜ ⎟
⎝ ⎠

 

If ( )0z TΛ << , then by putting 
( )0T

x
z

−
=

Λ
, we obtain 

 
( ) ( )

( )

( ) ( ) ( ) ( ) ( )

0

parcel parcel

0
parcel parcel parcel

10 1

0 0 1
0

e

z
x T

z
T

T z T
x

zT T T
T

Γ
−

Γ
−

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

⎛ ⎞Γ
≈ ≈ − ≈⎜ ⎟⎜ ⎟

⎝ ⎠
0 z−Γ
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hence, 

  ( ) ( )parcel parcel 0T z T≈ z−Γ             (12) 

 
3. Atmospheric stability  

In order to know the stability of atmosphere, we can study the stability of the 
equilibrium of an air parcel in this atmosphere. 

 At the altitude , where 0z ( ) ( )parcel 0 0T z T z= , the air parcel is in equilibrium. 

Indeed, in this case the specific mass ρ  of air in the parcel equals 'ρ - that of the 
surrounding air in the atmosphere. Therefore, the buoyant force of the surrounding air on 
the parcel equals the weight of the parcel. The resultant of these two forces is zero. 

   Remember that the temperature of the air parcel ( )parcelT z  is given by (7), in which 

we can assume approximately G = Γ  at any altitude  near z 0z z= .    

 Now, consider the stability of the air parcel equilibrium: 

 Suppose that the air parcel is lifted into a higher position, at the altitude 0z d+  

(with d>0),  ( ) ( )parcel 0 parcel 0T z d T z+ = −Γd  and ( ) ( )0 0T z d T z d+ = −Λ .    

• In the case the atmosphere has temperature lapse rate , we have Λ > Γ

( ) ( )parcel 0 0T z d T z d+ > + , then  'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel away 
from the equilibrium position. 

 Conversely, if the air parcel is lowered to the altitude  (d>0),             0z d−

( ) ( )parcel 0 0T z d T z d− < −  and then 'ρ ρ>  . 

   The buoyant force is then smaller than the air parcel weight; their resultant is oriented 
downward and tends to push the parcel away from the equilibrium position (see     
Figure 1) 
 So the equilibrium of the parcel is unstable, and we found that: An atmosphere with a 
temperature lapse rate is unstable. Λ > Γ

• In an atmosphere with temperature lapse rate Λ < Γ , if the air parcel is lifted to a 

higher position, at altitude 0z d+  (with d>0),  ( ) ( )parcel 0 0T z d T z d+ < + , then 
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'ρ ρ> . The buoyant force is then smaller than the air parcel weight, their resultant is 
oriented downward and tends to push the parcel back to the equilibrium position. 

  Conversely, if the air parcel is lowered to altitude (d > 0),             0z d−

( ) ( )parcel 0 0T z d T z d− > − and then 'ρ ρ< . The buoyant force is then larger than the 

air parcel weight, their resultant is oriented upward and tends to push the parcel also back 
to the equilibrium position (see Figure 2). 
 So the equilibrium of the parcel is stable, and we found that: An atmosphere with a 
temperature lapse rate is stable. Λ < Γ
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T> ⇒ parcelρ ρ<      up↑ 

parcelT T< ⇒ parcelρ ρ>    down↓ 

 
 
 

unstable 

0   ( )0T z               T 

T  Tparcel 

Γ      Λ 

Λ > Γ  
 
 
 
 
 
 
 
 
 
 

Figure 1 
 

   z 
 

z0+d 
z0

 z0-d 
 

 
 

parcelT T< ⇒ parcelρ ρ>  down ↓ 

parcelT T> ⇒ parcelρ ρ<    up↑ 

 
 
 

 stable 

0      ( )0T z               T

Tparcel T   

Λ   Γ

Λ < Γ  
 
 
 
 
 
 
 
 
 
 

Figure 2 
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• In an atmosphere with lapse rate Λ = Γ , if the parcel is brought from equilibrium 
position and put in any other position, it will stay there, the equilibrium is indifferent. An 
atmosphere with a temperature lapse rateΛ = Γ is neutral 
 
  3.2. In a stable atmosphere, withΛ < Γ , a parcel, which on ground has temperature 

( )parcel 0T  > ( )0T  and pressure ( )0p equal to that of the atmosphere, can rise and 

reach a maximal altitude , where h ( )parcelT h = ( )T h . 

 In vertical motion from the ground to the altitude , the air parcel realizes an 

adiabatic quasi-static process, in which its temperature changes from 

h

( )parcel 0T  to 

( ) ( )parcelT h T= h . Using (11), we can write:       

   
( )

( )
( )

( )

( ) ( )

parcel parcel0 0
1

0
0 1

0

T Th
T T h hT

T

Γ
−
Λ⎛ ⎞Λ

− = =⎜ ⎟⎜ ⎟ ⎛ ⎞Λ⎝ ⎠ −⎜ ⎟⎜ ⎟
⎝ ⎠

 

   
( ) ( ) ( )

1

1
parcel1 0

0
h T T

T

Γ
−
Λ

−⎛ ⎞Λ
− = ×⎜ ⎟⎜ ⎟

⎝ ⎠
0  

   

   
( ) ( ) ( )- -

parcel1 0
0
h T T

T

Λ Λ
−

Λ Γ Λ ΓΛ
− = × 0  

   

( ) ( ) ( )

( ) ( ) ( )

- -
parcel

parcel

1 0 1 0 0

1 0 0 0

h T T T

T T T

Λ Λ
−

Λ Γ Λ Γ

Λ Γ
−
Λ−Γ Γ−Λ

⎡ ⎤
= − ×⎢ ⎥Λ ⎢ ⎥⎣ ⎦

⎡ ⎤
= −⎢ ⎥Λ ⎢ ⎥⎣ ⎦

 

So that the maximal altitude  has the following expression: h

         ( ) ( )( )
( )( )

1

parcel

01 0
0

T
h T

T

Γ Γ−Λ

Λ

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥= − ⎜Λ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥

⎣ ⎦

                (13) 
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4. 
 Using data from the Table, we obtain the plot of  versus T  shown in Figure 3. z

 

0

100

200

300

20.0 20.5 21.0 21.5 22.0 22.5

D(20.6oC;142 m)
C(20.8oC; 119 m)

B(21.0oC; 96 m)

A( 22oC; 0 m)

Temperature [oC]

A
lti

tu
de

 [m
]

 

Figure 3 
 

 4.1. We can divide the atmosphere under 200m into three layers, corresponding to the 
following altitudes: 

1)     0 <  < 96 m,     z 3
1

21 5 20 1 K15 4 10
91 m

. . . −−
Λ = = × . 

2)    96 m <  < 119 m,   , isothermal layer.  z 2 0Λ =

3)    119 m <  < 215 m, z 3
22 20 1 K0 02
215 119 m

. .−
Λ = − = −

−
.  

In the layer 1), the parcel temperature can be calculated by using (11) 

       ( )parcel 96m 294 04 K 294.0 K.T = ≈  that is 21.0oC 

In the layer 2), the parcel temperature can be calculated by using its expression in 

isothermal atmosphere ( ) ( ) ( )parcel parcel 0
0

exp zT z T
T

⎡ ⎤Γ
= −⎢ ⎥

⎢ ⎥⎣ ⎦
. 
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The altitude 96 m is used as origin, corresponding to 0 m. The altitude 119 m 
corresponds to 23 m. We obtain the following value for parcel temperature:  

            ( )parcel 119 m 293 81 K.T =  that is 20.8oC 

 4.2. In the layer 3), starting from 119 m, by using (13) we find the maximal elevation 
 = 23 m, and the corresponding temperature 293.6 K (or 20.6 h oC).  

 Finally, the mixing height is 
          119 + 23 = 142 m.  H =
And  

          ( )parcel 142 m 293 6 K.T =   that is  20.6oC 

 From this relation, we can find ( )parcel 119 m 293 82 K.T ≈  and . 23 mh =

Note: By using approximate expression (12) we can easily find ( )parcelT z = 294 K and 

293.8 K at elevations 96 m and 119 m, respectively. At 119 m elevation, the difference 
between parcel and surrounding air temperatures is 0.7 K (= 293.8 – 293.1), so that the 

maximal distance the parcel will travel in the third layer is 0.7/( )3Γ −Λ = 0.7/0.03 = 23 m.  

 
5.     

Consider a volume of atmosphere of Hanoi metropolitan area being a parallelepiped 
with height , base sides L and W. The emission rate of CO gas by motorbikes from 
7:00 am to 8:00 am 

H

              M = 800 000 × 5 × 12 /3600 = 13 300 g/s 
The CO concentration in air is uniform at all points in the parallelepiped and denoted 

by ( )C t .  

5.1. After an elementary interval of time , due to the emission of the motorbikes, 
the mass of CO gas in the box increases by

dt
Mdt . The wind blows parallel to the short 

sides W, bringing away an amount of CO gas with mass ( )LHC t udt . The remaining 

part raises the CO concentration by a quantity  in all over the box. Therefore: dC

   ( )Mdt LHC t udt LWHdC− =  

or  
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       ( )dC u MC t
dt W LWH

+ =                                (14) 

5.2. The general solution of (14) is : 

      ( ) exp ut MC t K
W LH

⎛ ⎞= − +⎜ ⎟
⎝ ⎠ u

          (15) 

From the initial condition ( )0C 0= , we can deduce : 

       ( ) 1 expM utC t
LHu W

⎡ ⎤⎛ ⎞= − −⎜ ⎟⎢ ⎝ ⎠⎣ ⎦
⎥                        (16) 

 
5.3. Taking as origin of time the moment 7:00 am, then 8:00 am corresponds to 

=3600 s. Putting the given data in (15), we obtain : t

      ( ) ( ) 33600 s 6 35 1 0 64 2 3 mg/m. . .C = × − =  
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