
THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

Scientists can determine the distance Earth-Moon with great precision. They achieve 

this by bouncing a laser beam on special mirrors deposited on the Moon´s surface by 

astronauts in 1969, and measuring the round travel time of the light (see Figure 1). 

 

 

 
 

With these observations, they have directly measured that the Moon is slowly receding 

from the Earth. That is, the Earth-Moon distance is increasing with time. This is 

happening because due to tidal torques the Earth is transferring angular momentum to 

the Moon, see Figure 2. In this problem you will derive the basic parameters of the 

phenomenon. 

 

  

Figure 1. A laser beam sent 

from an observatory is used 

to measure accurately the 

distance between the Earth 

and the Moon. 



 
 

 

 

 

 

 

 

 

 

1. Conservation of Angular Momentum. 

 

Let 1L  be the present total angular momentum of the Earth-Moon system. Now, make 

the following assumptions: i) 1L  is the sum of the rotation of the Earth around its axis 

and the translation of the Moon in its orbit around the Earth only. ii) The Moon’s orbit 

is circular and the Moon can be taken as a point. iii) The Earth’s axis of rotation and the 

Moon’s axis of revolution are parallel. iv) To simplify the calculations, we take the 

motion to be around the center of the Earth and not the center of mass. Throughout the 

problem, all moments of inertia, torques and angular momenta are defined around the 

axis of the Earth. v) Ignore the influence of the Sun.  

 

1a Write down the equation for the present total angular momentum of the 

Earth-Moon system. Set this equation in terms of EI , the moment of 

inertia of the Earth; 1Eω , the present angular frequency of the Earth’s 

rotation; 1MI , the present moment of inertia of the Moon with respect to 

the Earth´s axis; and 1Mω , the present angular frequency of the Moon’s 

orbit. 

0.2 

 

This process of transfer of angular momentum will end when the period of rotation of 

the Earth and the period of revolution of the Moon around the Earth have the same 

duration. At this point the tidal bulges produced by the Moon on the Earth will be 

aligned with the line between the Moon and the Earth and the torque will disappear. 

 

 

Figure 2. The Moon’s gravity produces tidal deformations or “bulges” in the Earth. 

Because of the Earth’s rotation, the line that goes through the bulges is not aligned 

with the line between the Earth and the Moon. This misalignment produces a torque 

that transfers angular momentum from the Earth’s rotation to the Moon’s 

translation. The drawing is not to scale. 



1b Write down the equation for the final total angular momentum 2L of the 

Earth-Moon system. Make the same assumptions as in Question 1a. Set 

this equation in terms of EI , the moment of inertia of the Earth; 2ω , the 

final angular frequency of the Earth’s rotation and Moon’s translation; 

and 2MI , the final moment of inertia of the Moon. 

0.2 

 

 

1c Neglecting the contribution of the Earth´s rotation to the final total 

angular momentum, write down the equation that expresses the angular 

momentum conservation for this problem. 

0.3 

 

2. Final Separation and Final Angular Frequency of the Earth-Moon System. 

 

Assume that the gravitational equation for a circular orbit (of the Moon around the 

Earth) is always valid. Neglect the contribution of the Earth´s rotation to the final total 

angular momentum. 

 

2a Write down the gravitational equation for the circular orbit of the Moon 

around the Earth, at the final state, in terms of EM , 2ω , G and the final 

separation 2D  between the Earth and the Moon. EM  is the mass of the 

Earth and G  is the gravitational constant. 

0.2 

 

 

2b Write down the equation for the final separation 2D  between the Earth 

and the Moon in terms of the known parameters, 1L , the total angular 

momentum of the system, EM and MM , the masses of the Earth and 

Moon, respectively, and G . 

0.5 

 

2c Write down the equation for the final angular frequency 2ω  of the Earth-

Moon system in terms of the known parameters 1L , EM , MM  and G . 

0.5 

 

Below you will be asked to find the numerical values of 2D  and 2ω . For this you need 

to know the moment of inertia of the Earth.  

 

2d Write down the equation for the moment of inertia of the Earth EI  

assuming it is a sphere with inner density iρ  from the center to a radius 

ir , and with outer density oρ  from the radius ir  to the surface at a 

radius or  (see Figure 3).  

0.5 

 

 

 



  
 

 

 

 Determine the numerical values requested in this problem always to two significant 

digits. 

 

 

2e Evaluate the moment of inertia of the Earth EI , using 4103.1 ×=iρ kg m
-3
, 

6105.3 ×=ir m, 3100.4 ×=oρ  kg m
-3
, and 6104.6 ×=or m.  

0.2 

 

The masses of the Earth and Moon are 24100.6 ×=EM  kg and 22103.7 ×=MM kg, 

respectively. The present separation between the Earth and the Moon is 8

1 108.3 ×=D m. 

The present angular frequency of the Earth’s rotation is 5

1 103.7 −×=Eω s
-1
. The present 

angular frequency of the Moon’s translation around the Earth is 6

1 107.2 −×=Mω s
-1
, and 

the gravitational constant is 11107.6 −×=G m
3
 kg

-1
 s
-2
. 

 

 

2f Evaluate the numerical value of the total angular momentum of the 

system, 1L . 

0.2 

 

 

2g Find the final separation 2D in meters and in units of the present 

separation 1D . 

0.3 

 

 

2h Find the final angular frequency 2ω  in s
-1
, as well as the final duration of 

the day in units of present days. 

0.3 

 

 

Figure 3. The Earth as a sphere 

with two densities, 
iρ  and 

oρ . 

 



Verify that the assumption of neglecting the contribution of the Earth´s rotation to the 

final total angular momentum is justified by finding the ratio of the final angular 

momentum of the Earth to that of the Moon. This should be a small quantity. 

 

2i Find the ratio of the final angular momentum of the Earth to that of the 

Moon.  

 

0.2 

 

3. How much is the Moon receding per year? 

 

Now, you will find how much the Moon is receding from the Earth each year. For this, 

you will need to know the equation for the torque acting at present on the Moon. 

Assume that the tidal bulges can be approximated by two point masses, each of massm , 

located on the surface of the Earth, see Fig. 4. Let θ  be the angle between the line that 

goes through the bulges and the line that joins the centers of the Earth and the Moon.  

 

 
 

 
 

 

 

3a Find
cF , the magnitude of the force produced on the Moon by the closest 

point mass.  

 

0.4 

 

 

3b Find fF , the magnitude of the force produced on the Moon by the farthest  

point mass.   

0.4 

 

Figure 4.  Schematic diagram to estimate the torque produced on the Moon by the 

bulges on the Earth. The drawing is not to scale. 



You may now evaluate the torques produced by the point masses.  

 

3c Find the magnitude of
cτ , the torque produced by the closest point mass.  0.4 

 

3d Find the magnitude of fτ , the torque produced by the farthest point mass. 0.4 

 

3e Find the magnitude of the total torque τ  produced by the two masses. 

Since 1Dro <<  you should approximate your expression to lowest 

significant order in 
1/Dro . You may use that axx a +≈+ 1)1( , if 1<<x .   

1.0 

 

 

3f Calculate the numerical value of the total torque τ , taking into account 

that o3=θ  and that 16106.3 ×=m  kg  (note that this mass is of the order 

of 810− times the mass of the Earth). 

0.5 

 

Since the torque is the rate of change of angular momentum with time, find the increase 

in the distance Earth-Moon at present, per year. For this step, express the angular 

momentum of the Moon in terms of MM , EM , 1D  and G  only. 

 

3g Find the increase in the distance Earth-Moon at present, per year.  1.0 

 

Finally, estimate how much the length of the day is increasing each year. 

 

3h Find the decrease of 1Eω  per year and how much is the length of the day 

at present increasing each year.  

 

1.0 

 

4. Where is the energy going? 

 

In contrast to the angular momentum, that is conserved, the total (rotational plus 

gravitational) energy of the system is not. We will look into this in this last section. 

 

4a Write down an equation for the total (rotational plus gravitational) energy 

of the Earth-Moon system at present, E . Put this equation in terms of EI , 

1Eω  ,  MM , EM , 1D  and G  only. 

0.4 

 

4b Write down an equation for the change inE , E∆ , as a function of the 

changes in  1D  and in 1Eω . Evaluate the numerical value of E∆  for a 

year, using the values of changes in  1D  and in 1Eω found in questions 3g 

and 3h.  

0.4 



 

Verify that this loss of energy is consistent with an estimate for the energy dissipated as 

heat in the tides produced by the Moon on the Earth. Assume that the tides rise, on the 

average by 0.5 m, a layer of water =h   0.5 m deep that covers the surface of the Earth 

(for simplicity assume that all the surface of the Earth is covered with water). This 

happens twice a day. Further assume that 10% of this gravitational energy is dissipated 

as heat due to viscosity when the water descends. Take the density of water to be 
310=waterρ  kg m

-3
, and the gravitational acceleration on the surface of the Earth to be 

8.9=g  m s
-2
. 

 

4c What is the mass of this surface layer of water? 0.2 

 

4d Calculate how much energy is dissipated in a year? How does this 

compare with the energy lost per year by the Earth-Moon system at 

present?  

0.3 

 

 

 



THEORETICAL PROBLEM 2 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The purpose of this problem is to develop a simple theory to understand the so-called 

“laser cooling” and “optical molasses” phenomena. This refers to the cooling of a beam 

of neutral atoms, typically alkaline, by counterpropagating laser beams with the same 

frequency. This is part of the Physics Nobel Prize awarded to S. Chu, P. Phillips and C. 

Cohen-Tannoudji in 1997. 

 

 
 

 

The image above shows sodium atoms (the bright spot in the center) trapped at the 
intersection of three orthogonal pairs of opposing laser beams. The trapping region is 
called “optical molasses” because the dissipative optical force resembles the viscous 

drag on a body moving through molasses. 

 

In this problem you will analyze the basic phenomenon of the interaction between a 

photon incident on an atom and the basis of the dissipative mechanism in one 

dimension. 

 

 

PART I: BASICS OF LASER COOLING 

 

Consider an atom of mass m  moving in the +x  direction with velocity v . For 
simplicity, we shall consider the problem to be one-dimensional, namely, we shall 

ignore the y  and z  directions (see figure 1). The atom has two internal energy levels. 
The energy of the lowest state is considered to be zero and the energy of the excited 

state to be   hω0, where π2/h=h . The atom is initially in the lowest state. A laser beam 

with frequency ωL  in the laboratory is directed in the −x  direction and it is incident on 
the atom. Quantum mechanically the laser is composed of a large number of photons, 

each with energy   hωL  and momentum   −hq. A photon can be absorbed by the atom and 
later spontaneously emitted; this emission can occur with equal probabilities along the 

+x  and −x  directions. Since the atom moves at non-relativistic speeds, v /c <<1 (with 
c  the speed of light) keep terms up to first order in this quantity only. Consider also 

1/ <<mvqh , namely, that the momentum of the atom is much larger than the 



momentum of a single photon. In writing your answers, keep only corrections linear in 

either of the above quantities. 

 

 
 

Fig.1 Sketch of an atom of mass m  with velocity v  in the +x  direction, colliding with a 
photon with energy   hωL  and momentum   −hq. The atom has two internal states with 
energy difference   hω0. 

 

Assume that the laser frequency ωL  is tuned such that, as seen by the moving atom, it is 

in resonance with the internal transition of the atom.  Answer the following questions:  

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  0.2 

 

1b Write down the momentum pat  of the atom after absorption, as seen in the 

laboratory.  

0.2 

 

1c Write down the total energy εat  of the atom after absorption, as seen in the 

laboratory. 

0.2 

 

 

2. Spontaneous emission of a photon in the −x  direction. 
 

At some time after the absorption of the incident photon, the atom may emit a photon in 

the −x  direction.  
 

2a Write down the energy of the emitted photon, εph , after the emission 

process in the −x  direction, as seen in the laboratory.  

0.2 

 

2b Write down the momentum of the emitted photon pph , after the emission 

process in the −x  direction, as seen in the laboratory. 

0.2 

 



 

2c Write down the momentum of the atom pat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

2d Write down the total energy of the atom εat , after the emission process in 

the −x  direction, as seen in the laboratory. 
0.2 

 

 

3. Spontaneous emission of a photon in the +x  direction.  
 

At some time after the absorption of the incident photon, the atom may instead emit  a 

photon in the x+  direction.  

 

3a Write down the energy of the emitted photon, εph , after the emission 

process in the x+  direction, as seen in the laboratory.  

0.2 

 

3b Write down the momentum of the emitted photon pph , after the emission 

process in the x+  direction, as seen in the laboratory. 

0.2 

 

 

3c Write down the momentum of the atom pat , after the emission process in 

the x+ direction, as seen in the laboratory. 

0.2 

 

 

3d Write down the total energy of the atom εat , after the emission process in 

the x+  direction, as seen in the laboratory. 

0.2 

 

 

4. Average emission after the absorption. 

 

The spontaneous emission of a photon in the x−  or  in the x+  directions occurs with 

the same probability. Taking this into account, answer the following questions. 

 

4a Write down the average energy of an emitted photon, εph , after the 

emission process. 

0.2 

 

4b Write down the average momentum of an emitted photon pph , after the 

emission process. 

0.2 

 

 

4c Write down the average total energy of the atom εat , after the emission 

process. 

0.2 



 

4d Write down the average momentum of the atom pat , after the emission 

process. 

0.2 

 

5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser radiation 

and the atom.  

 

5a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.2 

 

 

5b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.2 

 

6. Energy and momentum transfer by a laser beam along the +x  direction. 
 

Consider now that a laser beam of frequency ′ ω L  is incident on the atom along the +x  
direction, while the atom moves also in the +x  direction with velocity v . Assuming a  
resonance condition between the internal transition of the atom and the laser beam, as 

seen by the atom, answer the following questions: 

 

6a Write down the average energy change ∆ε  of the atom after a complete 
one-photon absorption-emission process. 

0.3 

 

 

6b Write down the average momentum change ∆p  of the atom after a 
complete one-photon absorption-emission process. 

0.3 

 

 

PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

Nature, however, imposes an inherent uncertainty in quantum processes. Thus, the fact 

that the atom can spontaneously emit a photon in a finite time after absorption, gives 

as a result that the resonance condition does not have to be obeyed exactly as in the 

discussion above. That is, the frequency of the laser beams ωL  and ′ ω L  may have any 
value and the absorption-emission process can still occur. These will happen with 

different (quantum) probabilities and, as one should expect, the maximum probability 

is found at the exact resonance condition. On the average, the time elapsed between a 

single process of absorption and emission is called the lifetime of the excited energy 

level of the atom and it is denoted byΓ−1. 

 

Consider a collection of N  atoms at rest in the laboratory frame of reference, and a 



laser beam of frequency ωL  incident on them. The atoms absorb and emit 

continuously such that there is, on average, Nexc  atoms in the excited state (and 

therefore, N − Nexc  atoms in the ground state). A quantum mechanical calculation 

yields the following result:  

Nexc = N
ΩR

2

ω0 −ωL( )2 + Γ2

4
+ 2ΩR

2

 

 

where ω0 is the resonance frequency of the atomic transition and ΩR  is the so-called 

Rabi frequency; ΩR
2  is proportional to the intensity of the laser beam. As mentioned 

above, you can see that this number is different from zero even if the resonance 

frequency ω0 is different from the frequency of the laser beamωL . An alternative way 

of expressing the previous result is that the number of absorption-emission processes 

per unit of time isNexcΓ . 
 

 

Consider the physical situation depicted in Figure 2, in which two counter propagating 

laser beams with the same but arbitrary frequency ωL  are incident on a gas of N  
atoms that move in the +x  direction with velocityv . 
 

 
Figure 2. Two counter propagating laser beams with the same but arbitrary frequency 

ωL  are incident on a gas of N  atoms that move in the +x  direction with velocityv .  
 

7. Force on the atomic beam by the lasers. 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You should assume that qmv h>> . 

1.5 

 

8. Low velocity limit. 

 

Assume now that the velocity of the atoms is small enough, such that you can expand 

the force up to first order in v . 
 

8a Find an expression for the force found in Question (7a), in this limit. 1.5 

 

Using this result, you can find the conditions for speeding up, slowing down, or no 

effect at all on the atoms by the laser radiation. 

 



8b Write down the condition to obtain a positive force (speeding up the 

atoms). 

0.25 

 

 

8c Write down the condition to obtain a zero force. 0.25 

 

 

8d Write down the condition to obtain a negative force (slowing down the 

atoms). 

0.25 

 

8e Consider now that the atoms are moving with a velocity v−  (in the x−  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 

0.25 

 

 

9. Optical molasses. 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, at 0=t , the gas of atoms has velocity 0v . 

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a timeτ .  
1.5 

 

 

9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperatureT0. Find the temperature T  after the laser beams have been 
on for a timeτ . 

0.5 

 

This model does not allow you to go to arbitrarily low temperatures. 



THEORETICAL PROBLEM No. 3 

 

WHY ARE STARS SO LARGE? 

 

The stars are spheres of hot gas. Most of them shine because they are fusing hydrogen 

into helium in their central parts. In this problem we use concepts of both classical and 

quantum mechanics, as well as of  electrostatics and thermodynamics, to understand 

why stars have to be big enough to achieve this fusion process and also derive what 

would be the mass and radius of the smallest star that can fuse hydrogen. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Our Sun, as most stars, shines 

as a result of thermonuclear fusion of 

hydrogen into helium in its central 

parts. 

USEFUL CONSTANTS 

Gravitational constant = 11107.6 −×=G  m
3
 kg

-1
 s
2 

Boltzmann´s constant = 23104.1 −×=k J K
-1 

Planck’s constant = 34106.6 −×=h  m
2
 kg s

-1
 

Mass of the proton = 27107.1 −×=pm kg 

Mass of the electron = 31101.9 −×=em kg 

Unit of electric charge = 19106.1 −×=q C 

Electric constant (vacuum permittivity) = 12

0 109.8 −×=ε  C
2 
N
-1 
m

-2 

Radius of the Sun = 8100.7 ×=SR m 

Mass of the Sun = 30100.2 ×=SM kg 



 

 

 

 

1. A classical estimate of the temperature at the center of the stars. 

 

Assume that the gas that forms the star is pure ionized hydrogen (electrons and protons 

in equal amounts), and that it behaves like an ideal gas. From the classical point of view, 

to fuse two protons, they need to get as close as 1510− m for the short range strong 

nuclear force, which is attractive, to become dominant. However, to bring them together 

they have to overcome first the repulsive action of Coulomb’s force. Assume classically 

that the two protons (taken to be point sources) are moving in an antiparallel way, each 

with velocity
rmsv , the root-mean-square (rms) velocity of the protons, in a one-

dimensional frontal collision.  

 

1a  What has to be the temperature of the gas,
cT , so that the distance of 

closest approach of the protons, cd , equals 1510− m? Give this and all 

numerical values in this problem up to two significant figures. 

1.5 

 

  

2. Finding that the previous temperature estimate is wrong. 

To check if the previous temperature estimate is reasonable, one needs an independent 

way of estimating the central temperature of a star. The structure of the stars is very 

complicated, but we can gain significant understanding making some assumptions. Stars 

are in equilibrium, that is, they do not expand or contract because the inward force of 

gravity is balanced by the outward force of pressure (see Figure 2). For a slab of gas the 

equation of hydrostatic equilibrium at a given distance r from the center of the star, is 

given by 

2r

MG

r

P rr ρ−=
∆
∆

, 

where P is the pressure of the gas, G  the gravitational constant, rM the mass of the star 

within a sphere of radius r , and rρ is the density of the gas in the slab.  

 



  

 

An order of magnitude estimate of the central temperature of the star can be obtained 

with values of the parameters at the center and at the surface of the star, making the 

following approximations: 

co PPP −≈∆ , 

where cP  and oP  are the pressures at the center and surface of the star, respectively. 

Since oc PP >> , we can assume that 

cPP −≈∆ . 

Within the same approximation, we can write 

Rr ≈∆ , 

where R is the total radius of the star, and 

MMM Rr =≈ , 

with M the total mass of the star. 

The density may be approximated by its value at the center, 

cr ρρ ≈ . 

You can assume that the pressure is that of an ideal gas. 

2a Find an equation for the temperature at the center of the star, cT , in terms 

of the radius and mass of the star and of physical constants only. 

0.5 

 

 

Figure 2. The stars 

are in hydrostatic 

equilibrium, with the 

pressure difference 

balancing gravity. 



We can use now the following prediction of this model as a criterion for its validity: 

  

2b Using the equation found in (2a) write down the ratio RM /  expected for 

a star in terms of physical constants and 
cT only.  

0.5 

 

2c Use the value of  cT  derived in section (1a) and find the numerical value 

of the ratio RM /  expected for a star.  

0.5 

 

2d Now, calculate the ratio )(/)( SunRSunM , and verify that this value is 

much smaller than the one found in (2c). 

0.5 

 

3. A quantum mechanical estimate of the temperature at the center of the 

stars 

 

The large discrepancy found in (2d) suggests that the classical estimate for cT obtained 

in (1a) is not correct. The solution to this discrepancy is found when we consider 

quantum mechanical effects, that tell us that the protons behave as waves and that a 

single proton is smeared on a size of the order of pλ , the de Broglie wavelength. This 

implies that if
cd , the distance of closest approach of the protons is of the order of pλ , 

the protons in a quantum mechanical sense overlap and can fuse.  

 

3a 
 Assuming that 

2/12

p

cd
λ

=  is the condition that allows fusion, for a proton 

with velocity rmsv , find an equation for cT in terms of physical constants 

only. 

1.0 

 

3b  Evaluate numerically the value of cT obtained in (3a).  0.5 

 

3c  Use the value of  cT  derived in (3b) to find the numerical value of the 

ratio RM /  expected for a star, using the formula derived in (2b). Verify 

that this value is quite similar to the ratio )(/)( SunRSunM  observed.  

0.5 

 

Indeed, stars in the so-called main sequence (fusing hydrogen) approximately do follow 

this ratio for a large range of masses. 

 

 



4. The mass/radius ratio of the stars. 

 

The previous agreement suggests that the quantum mechanical approach for estimating 

the temperature at the center of the Sun is correct.  

 

4a  Use the previous results to demonstrate that for any star fusing hydrogen, 

the ratio of mass M to radius R is the same and depends only on physical 

constants. Find the equation for the ratio RM / for stars fusing hydrogen.  

0.5 

 

5. The mass and radius of the smallest star. 

The result found in (4a) suggests that there could be stars of any mass as long as such a 

relationship is fulfilled; however, this is not true.  

The gas inside normal stars fusing hydrogen is known to behave approximately as an 

ideal gas. This means that ed , the typical separation between electrons is on the average 

larger that eλ , their typical de Broglie wavelength. If closer, the electrons would be in a 

so-called degenerate state and the stars would behave differently. Note the distinction in 
the ways we treat protons and electrons inside the star. For protons, their de Broglie 

waves should overlap closely as they collide in order to fuse, whereas for electrons their 

de Broglie waves should not overlap in order to remain as an ideal gas.   

The density in the stars increases with decreasing radius. Nevertheless, for this order-of-

magnitude estimate assume they are of uniform density. You may further use that 

ep mm >> . 

 

5a  Find an equation for en , the average electron number density inside the 

star. 

0.5 

 

5b  Find an equation for ed , the typical separation between electrons inside 

the star. 

0.5 

 

5c 
 Use the 

2/12

e
ed

λ≥  condition to write down an equation for the radius of 

the smallest normal star possible. Take the temperature at the center of the 

star as typical for all the stellar interior.  

1.5 

 



 

 

6. Fusing helium nuclei in older stars. 

 

As stars get older they will have fused most of the hydrogen in their cores into helium 

(He), so they are forced to start fusing helium into heavier elements in order to continue 

shining. A helium nucleus has two protons and two neutrons, so it has twice the charge 

and approximately four times the mass of a proton. We saw before that 
2/12

p

cd
λ

= is the 

condition for the protons to fuse.  

 

6a  Set the equivalent condition for helium nuclei and find )(Hevrms , the rms 

velocity of the helium nuclei and )(HeT , the temperature needed for 

helium fusion.  

0.5 

 

5d  Find the numerical value of the radius of the smallest normal star 

possible, both in meters and in units of solar radius.  

0.5 

5e  Find the numerical value of the mass of the smallest normal star possible, 

both in kg and in units of solar masses.  

0.5 


