
THEORETICAL PROBLEM No. 1 

 

EVOLUTION OF THE EARTH-MOON SYSTEM 

 

SOLUTIONS 

 

     1.  Conservation of Angular Momentum 
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2. Final Separation and Angular Frequency of the Earth-Moon System. 
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2d The moment of inertia of the Earth will be the addition of the moment of 

inertia of a sphere with radius or  and density o  and of a sphere with 

radius ir  and density oi   : 
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and 34
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approximation is justified since the final angular momentum of the Earth 

is 1/260 of that of the Moon. 
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3. How much is the Moon receding per year? 

 

 

3a Using the law of cosines, the magnitude of the force produced by the mass 

m closest to the Moon will be: 
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3b Using the law of cosines, the magnitude of the force produced by the mass 

m farthest to the Moon will be: 
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3c Using the law of sines, the torque will be 
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3d Using the law of sines, the torque will be 
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3g Since EM MGD 3

1

2

1 , we have that the angular momentum of the Moon is 
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That for 7101.3 t s = 1 year, gives 034.01 D m. 

This is the yearly increase in the Earth-Moon distance. 
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If EP is the period of time considered, we have that: 
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since 41064.81  dayPE s, we get 
5109.1  EP s. 

This is the amount of time that the day lengthens in a year.  
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4. Where is the energy going? 

 

 

4a The present total (rotational plus gravitational) energy of the system is: 
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4c 
waterowater hrM   24 kg = 17106.2  kg. 0.2 

 

 

4d 191 103.91.036525.0   daysdaymMgE waterwater J. Then, the 

two energy estimates are comparable. 

0.3 

 

  



THEORETICAL PROBLEM 2 

 

SOLUTION 

 

DOPPLER LASER COOLING AND OPTICAL MOLASSES 

 

The key to this problem is the Doppler effect (to be precise, the longitudinal Doppler 

effect): The frequency of a monochromatic beam of light detected by an observer 

depends on its state of motion relative to the emitter, i.e. the observed frequency is 
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where 



v  is the relative speed of emitter and observer and 



  the frequency of the 

emitter. The upper-lower signs correspond, respectively, when source and observer 

move towards or away from each other. The second equality holds in the limit of low 

velocities (non-relativistic limit). 

 

The frequency of the laser in the lab is 



L ; 



0 is the transition frequency of the atom; 

the atom moves with speed 



v  towards the incident direction of the laser: 

 

It is important to point out that the results must be given to first significant order in 



v /c  

or mvq / . 

 

PART I: BASICS OF LASER COOLING 

 

1. Absorption. 

 

1a Write down the resonance condition for the absorption of the photon.  
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1b Write down the momentum 



pat  of the atom after absorption, as seen in the 

laboratory 

c
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1c Write down the energy 



at of the atom after absorption, as seen in the 

laboratory 
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2. Spontaneous emission in the 



x  direction. 

 

 

First, one calculates the energy of the emitted photon, as seen in the lab reference frame. 

One must be careful to keep the correct order; this is because the velocity of the atom 

changes after the absorption, however, this is second order correction for the emitted 

frequency: 
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2a Write down the energy of the emitted photon, 



ph, after the emission 

process in the 



x  direction, as seen in the laboratory.  
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2b Write down the momentum of the emitted photon 



pph , after the emission 

process in the 



x  direction, as seen in the laboratory. 
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Use conservation of momentum (see 1b): 
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2c Write down the momentum of the atom 



pat , after the emission process in 

the 



x  direction, as seen in the laboratory. 
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2d Write down the energy of the atom 



at, after the emission process in the 



x  direction, as seen in the laboratory. 
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3. Spontaneous emission in the 



x  direction. 

 

The same as in the previous questions, keeping the right order 

 

3a Write down the energy of the emitted photon, 
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ph, after the emission 

process in the x  direction, as seen in the laboratory. 
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3b Write down the momentum of the emitted photon 



pph , after the emission 

process in the x  direction, as seen in the laboratory. 
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3c Write down the momentum of the atom 



pat , after the emission process in 

the x direction, as seen in the laboratory. 
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3d Write down the energy of the atom 



at, after the emission process in the 

x  direction, as seen in the laboratory. 
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4. Average emission after absorption. 

 

The spontaneous emission processes occur with equal probabilities in both directions. 

 

4a Write down the average energy of an emitted photon, 



ph, after the 

emission process. 
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4b Write down the average momentum of an emitted photon 



pph , after the 

emission process. 
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4c Write down the average energy of the atom 



at, after the emission process. 
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4d Write down the average momentum of the atom 



pat , after the emission 

process. 
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5. Energy and momentum transfer. 

 

Assuming a complete one-photon absorption-emission process only, as described 

above, there is a net average momentum and energy transfer between the laser and the 

atom. 

 

5a Write down the average energy change 



 of the atom after a complete 

one-photon absorption-emission process. 
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5b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 
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6. Energy and momentum transfer by a laser beam along the 



x  direction. 

 

 

6a Write down the average energy change 
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 of the atom after a complete 

one-photon absorption-emission process. 
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6b Write down the average momentum change 



p  of the atom after a 

complete one-photon absorption-emission process. 
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PART II: DISSIPATION AND THE FUNDAMENTALS OF OPTICAL 

MOLASSES 

 

 

Two counterpropagating laser beams with the same but arbitrary frequency 



L  are 

incident on a beam of 



N  atoms that move in the 



x  direction with (average) velocity 



v . 



7. Force on the atomic beam by the lasers. 

 

On the average, the fraction of atoms found in the excited state is given by, 
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where 



0 is the resonance frequency of the atoms and 



R  is the so-called Rabi 

frequency; 



R

2  is proportional to the intensity of the laser beam. The lifetime of the 

excited energy level of the atom is



1. 

 

The force is calculated as the number of absorption-emission cycles, times the 

momentum exchange in each event, divided by the time of each event. CAREFUL! 

One must take into account the Doppler shift of each laser, as seen by the atoms: 

 

 

7a With the information found so far, find the force that the lasers exert on 

the atomic beam. You must assume that qmv  . 
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8. Low velocity limit. 

 

Assume now the velocity to be small enough in order to expand the force to first order 

in 



v . 

 

8a Find an expression for the force found in Question (7a), in this limit. 
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8b Write down the condition to obtain a positive force (speeding up the 

atom).   



0 L  
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8c Write down the condition to obtain a zero force. 
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8d Write down the condition to obtain a negative force (slowing down the 

atom).  



0 L  … this is the famous rule “tune below resonance for cooling 

down” 
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8e Consider now that the atoms are moving with a velocity v  (in the x  

direction). Write down the condition to obtain a slowing down force on 

the atoms. 



0 L  … i.e. independent of the direction motion of the atom. 
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9. Optical molasses 

 

In the case of a negative force, one obtains a frictional dissipative force. Assume that 

initially, 0t , the gas of atoms has velocity 0v .  

 

9a In the limit of low velocities, find the velocity of the atoms after the laser 

beams have been on for a time .  
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 can be read from (8a) 
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9b Assume now that the gas of atoms is in thermal equilibrium at a 

temperature



T0 . Find the temperature 



T  after the laser beams have been 

on for a time
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Answers 

Theoretical Problem No. 3 

 

Why are stars so large? 

1) A first, classic estimate of the temperature at the center of the stars. 

 

1a We equate the initial kinetic energy of the two protons to the electric 

potential energy at the distance of closest approach: 
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          2) Finding that the previous temperature estimate is wrong.  

 

2a Since we have that 
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previous equation appears because we have two particles (one proton and 

one electron) per proton mass and that both contribute equally to the 

pressure. Equating the two previous equations, we finally obtain that: 
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2b From section (2a) we have that: 
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2c From section (2b) we have that, for 9105.5 cT K:  
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2d For the Sun we have that: 
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       3) A quantum mechanical estimate of the temperature at the center of the stars 
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3c From section (2b) we have that, for 6107.9 cT K:
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        4) The mass/radius ratio of the stars. 

 

4a Taking into account that 0.5 
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5) The mass and radius of the smallest star. 
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5c We assume that 
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5e The mass to radius ratio is: 
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6) Fusing helium nuclei in older stars. 

 

6a For helium we have that 
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This value is of the order of magnitude of the estimates of stellar models. 
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