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Solutions 

1.1  

 

 

 

Top view: Triangle MBC: |  |        ,                   , and 

         , so                      .  

Then |  |  
|  |    (    )

   (    )
         . 

Triangle DBC: |  |          ,                    ,and         ,  
so                      . 

Then |  |  
|  |    (    )

   (    )
           

Triangle EBC: |  |          ,                    , and         ,  
so                      . 

Then |  |  
|  |    (    )

   (    )
          . 

Triangle EDC:                   Horizontal distance traveled by 

Maribo:|  |  
|  |    (    )

   (    )
          

Side view: Triangle CDF: |  |  |  |    (    )           

Triangle CEG: |  |  |  |    (    )           

Thus vertical distance travelled by Maribo: |  |  |  |          . 

Total distance travelled by Maribo from frame 155 to 161: 

|  |  √|  |  (|  |  |  |)          . 

The speed of Maribo is   
        

             
           

 
 

1.3 

 

1.2a 

Newton's second law:   
  

  
          

     yields  
 

  
    

        
 

  
   . 

By integration   
  

        
  
(
 

   
  )

 

  
       .  

Alternative solution: The average force on the meteoroid when the speed decreases from 

   to        can be estimated to              
  (       )

 . Using that the accele-

ration is approximately constant,              
  (       )

    , results in 

   
       

   
       . 
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1.2b     
     

 
 

 
   
 

   (      )       
 
       

       
          . 0.3 

 

1.3a 

[ ]  [ ] [   ]
 [   ]

  [   ]
  [ ] [      ] [         ]  [           ] , 

so [ ]  [  ]   [ ]        [ ]       [ ]    .   

Thus      ,             ,            , and         . 

From which (       )   ( 
 

 
  

 

 
  

 

 
  

 

 
)  and  ( )  √

    

      
. 

0.6 

1.3b  (   )   1.6 mm                           . 0.4 

 

1.4a Rb-Sr decay scheme:     
        

      
    ̅  0.3 

1.4b 

     ( )       ( ) 
   and Rb Sr:       ( )       ( )  [     ( )       ( )]. 

Thus      ( )       ( )  ( 
    )     ( ), and dividing by       we obtain the 

equation of a straight line: 
     ( )

     
  

     ( )

     
 (     )

     ( )

     
. 

0.7 

1.4c 

Slope:         
           

    
       and     

  ( )

 
              .  

 

So      (   )
 

 
 
  (   )

  ( )
         

       . 

0.4 

 

1.5 

Kepler's 3rd law on comet Encke and Earth, with the orbital semi-major axis of Encke 

given by   
 

 
(         ). Thus         (

 

  
)

 

 
                    

   .  
0.6 

  

1.6a 

For Earth around its rotation axis:  Angular velocity    
  

    
              . 

Moment of inertia        
 

 
    

                 .  

Angular momentum                 
           .  

Asteroid:      
  

 
    
             

       and angular momentum  

                        
           .      is perpendicular to   , so by 

conservation angular momentum:     (  )           =          .The axis tilt 

                  (so the North Pole moves             ). 

0.7 

1.6b 

At vertical impact       so  (    )   . Thus        (   )   , and since  

             
           

    we obtain             
       . The change 

in rotation period is       (
 

      
 

 

  
)     

   

  
         

    . 
0.7 

1.6c 
At tangential impact      is parallel to    so         (       )(      ) and 

thus       (
 

      
 

 

  
)    (

      

       
 

 

  
)              . 

0.7 
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1.7 

Maximum impact speed     
    arises from three contributions:  

 

(I) The velocity    of the body at distance    (Earth orbit radius) from the Sun, 

   √
    

  
          .  

(II) The orbital velocity of the Earth,     
    

      
          .  

(III) Gravitational attraction from the Earth and kinetic energy seen from the Earth:  

       
 

 
(     )

    
   

  
 
 

 
(    

   )
 
.  

 

In conclusion:     
    √(     )

   
    

  
          . 

1.6 

 

 Total 9.0 
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Solutions 

 

 A single spherical silver nanoparticle 

 2.1 

Volume of the nanoparticle:   
 

 
                 .   

Mass of the nanoparticle:                        . 

Number of ions in the nanoparticle:     
 

   
         .       

Charge density    
  

 
                , charge density      . 

Electrons’ concentration   
 

 
              .  

Total charge of free electrons                  .   

Total mass of free electrons                      . 

0.7 

 

The electric field in a charge-neutral region inside a charged sphere 

 2.2 

For a sphere with radius   and constant charge density  , for any point inside the sphere 

designated by radius-vector           ) Gauss's law yields directly           
 

 
       , where    is the unit radial vector pointing away from the center of the 

sphere. Thus,     
 

   
 .  

Likewise, inside another sphere of radius    and charge density    the field is      
  

   
   , where    is the radius-vector of the point in the coordinate system with the origin 

in the center of this sphere. 

Superposition of the two charge configurations gives the setup we want with      
  . So 

 inside the charge-free region |    |     the field is         
 

   
  

  

   
        or   

 

   
   with pre-factor   

 

 
  

1.2 

 

The restoring force on the displaced electron cloud 

2.3 

With          and      we have from above that approximately the field induced 

inside the particle is      
 

   
  . The number of electrons on the particle’s border that 

produced      is negligibly smaller than the number of electrons inside the particle, so 

             
 

   
     

  

   
            (note the antiparallel attractive force 

is proportional to the displacement that it is similar to Hooke’s law). 

The work done on the electron cloud to shift it is 

     ∫           
  

 

 

 
 (

  

   
      )   

   

1.0 

  

The spherical silver nanoparticle in an external constant electric field 

2.4 
Inside the metallic particle in the steady state the electric field must be equal to 0. The 

induced field (from 2.2 or 2.3) compensates the external field:           , so 0.6 
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  . 

Charge displaced through the   -plane is the total charge of electrons in the cylinder of 

radius   and height   :                        .  

   

The equivalent capacitance and inductance of the silver nanoparticle  

2.5a 

The electric energy     of a capacitor with capacitance   holding charges      is 

    
   

  
 . The energy of such capacitor is equal to the work (see 2.3) done to separate 

the charges (see 2.4), thus   
   

    
 

 

 
                 .  

0.7 

2.5b 
Equivalent scheme for a capacitor reads:       .  Combining charge from (2.4) and 

capacitance from (2.5a) gives    
  

 
  

 

 
    . 

0.4 

 

2.6a 

The kinetic energy of the electron cloud is defined as the kinetic energy of one electron 

multiplied by the number of electrons in the cloud 

     
 

 
   

   
 

 
   

 (
 

 
     ).  

The current   is the charge of electrons in the cylinder of area     and height     

divided by time    (or simply the time derivative of charge    ), thus            . 

0.7 

2.6b 

The energy carried by current   in the equivalent circuit with inductance   is   
 

 
     

is, in fact, the kinetic energy of electrons     . Taking the energy and current from 

(2.6a) gives    
    

                    .  

0.5 

 

 The plasmon resonance of the silver nanoparticle  

2.7a 
From the LC-circuit analogy we can directly derive              √          . 
Alternatively it is possible to use the harmonic law of motion in (2.3) and get the same 

result for the frequency. 

0.5 

2.7b 
              rad/s, for light with angular frequency      the wavelength is  

                 . 
0.4 

 

The silver nanoparticle illuminated with light at the plasmon frequency  

2.8a 

The velocity of an electron   
  

  
                  . The time-averaged 

kinetic energy on the electron 〈  〉  〈
   

 

 
〉  

  

 
〈  〉. During time   each electron 

hits an ion one time. So the energy lost in the whole nanoparticle during time   is 

       〈
   

 

 
〉  

 

 
    〈

   
 

 
〉. Time-averaged Joule heating power  

      
 

 
     

 

  
  〈 

 〉 (
 

 
     ).     

The expression for current is taken from (2.6a), squared and averaged 

1.0 
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〈  〉            〈  〉  (
  

  
)
 
〈  〉. 

2.8b 

The average time between the collisions is       , so each electron oscillates many 

times before  it collides with an ion. The oscillating current           
             produces the heat in the resistance       equal to            〈 

 〉, 

that together with results from (2.8a) leads to       
    

 〈  〉
 

   

       
       . 

1.0 

  

2.9 

For equivalent scattering resistance        
     

〈  〉
 and for harmonic oscillations we can 

average the velocity squared over one period of oscillations, so 〈  〉  
 

 
  

   
 . 

Together it yields       
    

   
 

       

    

   〈  〉
 

   
   

              . 

1.0 

     

2.10a 

Ohm’s law for a LCR serious circuit is    
  

√               (   
 

  
)
 
. At the resonance 

frequency time-averaged voltage squared is 〈  〉    
 〈  〉               

 〈  〉. 

And from (2.5b) 〈  〉  
 

 
  

   
 

 
    

 , so Ohm’s law results in 〈  〉  
     

 

               
. 

The time-averaged power losses are            〈 
 〉  

       
 

               
  

     and 

      
       

 

               
  

  
     

     
〈     〉. 

 

1.2 

2.10b 
Starting with the electric field amplitude    √                  , we calculate       

              and              . 
0.3 

 

Steam generation by light 

2.11a 

Total number of nanoparticles in the vessel:                       Then the 

total time-averaged Joule heating power:                   kW. This power goes 

into the steam generation:            , with                           
                              . Thus the mass of steam produced in one second 

is:     
   

    
                  . 

0.6 

2.11b 

The power of light incident on the vessel                            
       , and the power directed for steam production by nanoparticles is given in 

2.11a. Efficiency of the process is   
   

     
 

       

       
 = 0.498. 

0.2 

 

  Total 12.0 
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Solutions 
 

3.1 The pressure is given by the hydrostatic pressure 𝑝(𝑥, 𝑧) = 𝜌ice𝑔(𝐻(𝑥) − 𝑧), which is 
zero at the surface. 0.3 

 

3.2a 

The outward force on a vertical slice at a distance 𝑥 from the middle and of a given 
width ∆𝑦 is obtained by integrating up the pressure times the area: 

𝐹(𝑥) = ∆𝑦� 𝜌ice 𝑔 (𝐻(𝑥) − 𝑧) d𝑧 
𝐻(𝑥)

0
=

1
2

 ∆𝑦 𝜌ice 𝑔 𝐻(𝑥)2 

which implies that ∆𝐹 = 𝐹(𝑥) − 𝐹(𝑥 + ∆𝑥) = − d𝐹
d𝑥
∆𝑥 = −∆𝑦 𝜌ice 𝑔 𝐻(𝑥) d𝐻

d𝑥
∆𝑥. 

This finally shows that 

𝑆b =
𝛥𝐹
∆𝑥∆𝑦

= − 𝜌ice 𝑔 𝐻(𝑥)
d𝐻
d𝑥

 

Notice the sign, which must be like this, since 𝑆𝑏 was defined as positive and 𝐻(𝑥) is a 
decreasing function of 𝑥. 

0.9 

3.2b 

To find the height profile, we solve the differential equation for 𝐻(𝑥): 

−
𝑆b

 𝜌ice 𝑔
=  𝐻(𝑥)

d𝐻
d𝑥

=
1
2

d
d𝑥

𝐻(𝑥)2 

with the boundary condition that 𝐻(𝐿) = 0. This gives the solution: 

𝐻(𝑥) = �
2𝑆𝑏𝐿
𝜌ice 𝑔�

1 − 𝑥/𝐿 

Which gives the maximum height 𝐻m = � 2𝑆𝑏𝐿
𝜌ice 𝑔

.  

Alternatively, dimensional analysis could be used in the following manner. First notice 
that ℒ = [𝐻m] = �𝜌ice𝛼  𝑔𝛽𝜏b

𝛾𝐿𝛿  �. Using that �𝜌𝜌ice� = ℳℒ−3, [𝑔] = ℒ 𝒯−2, [𝜏𝑏] =
ℳℒ−1 𝒯−2, demands that ℒ = [𝐻m] = �𝜌𝑖𝛼𝑔𝛽𝜏𝑏𝛾𝐿𝛿� = ℳ𝛼+𝛾ℒ−3𝛼+𝛽−𝛾+𝛿  𝒯−2𝛽−2𝛾, 
which again implies 𝛼 + 𝛾 = 0, −3𝛼 + 𝛽 − 𝛾 + 𝛿 = 1, 2𝛽 + 2𝛾 = 0. These three 
equations are solved to give 𝛼 = 𝛽 = −𝛾 = 𝛿 − 1, which shows that 

𝐻m ∝ �
𝑆b

𝜌𝜌ice𝑔
�
𝛾

𝐿1−𝛾 

Since we were informed that  𝐻m ∝ √𝐿 , it follows that 𝛾 = 1/2. With the boundary 
condition 𝐻(𝐿) = 0, the solution then take the form  

𝐻(𝑥) ∝ �
𝑆b

𝜌ice 𝑔
�
1/2

√𝐿 − 𝑥 

The proportionality constant of √2 cannot be determined in this approach. 
 
 

0.8 
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3.2c 

For the rectangular Greenland model, the area is equal to 𝐴 = 10𝐿2 and the volume is 
found by integrating up the height profile found in problem 3.2b: 

𝑉G,ice = (5𝐿)2∫ 𝐻(𝑥) d𝑥𝐿
0 = 10𝐿 ∫ � 𝜏b 𝐿

𝜌ice 𝑔
�
1/2

�1 − 𝑥/𝐿 d𝑥𝐿
0  = 10𝐻m𝐿2 ∫ √1 − 𝑥� d𝑥�1

0  

           = 10𝐻m𝐿2 �−
2
3

(1 − 𝑥�)3/2�
0

1
 = 20

3
𝐻m𝐿2 ∝ 𝐿5/2, 

where the last line follows from the fact that 𝐻m ∝ √𝐿. Note that the integral need not 
be carried out to find the scaling with 𝐿. This implies that 𝑉G,ice ∝ 𝐴𝐺5/4 and the wanted 
exponent is 𝛾 = 5/4. 

0.5 

 
 

3.3 

According to the assumption of constant accumulation c the total mass accumulation 
rate from an area of width ∆𝑦 between the ice divide at 𝑥 = 0 and some point at 𝑥 > 0 
must equal the total mass flux through the corresponding vertical cross section at 𝑥. 
That is: 𝜌𝑐𝑥∆𝑦 = 𝜌∆𝑦𝐻m𝑣𝑥(𝑥), from which the velocity is isolated: 

𝑣𝑥(𝑥) =
𝑐𝑥
𝐻m

 

0.6 

 
 

3.4 

From the given relation of incompressibility it follows that 
d𝑣𝑧
d𝑧

= −
d𝑣𝑥
d𝑥

= −
𝑐
𝐻m

 

Solving this differential equation with the initial condition 𝑣𝑧(0) = 0, shows that: 
𝑣𝑧(𝑧) = −

𝑐𝑧
𝐻m

 

0.6 

 
 

3.5 

Solving the two differential equations 
d𝑧
d𝑡

= −
𝑐𝑧
𝐻m

       and         
d𝑥
d𝑡

=
𝑐𝑥
𝐻m

 

with the initial conditions that 𝑧(0) = 𝐻m, and 𝑥(0) = 𝑥𝑖 gives  
𝑧(𝑡) = 𝐻m e−𝑐𝑡/𝐻m        and         𝑥(𝑡) = 𝑥𝑖  e𝑐𝑡/𝐻m 

This shows that 𝑧 = 𝐻m 𝑥𝑖 /𝑥, meaning that flow lines are hyperbolas in the 𝑥𝑧-plane. 
Rather than solving the differential equations, one can also use them to show that 

d
d𝑡

(𝑥𝑧) =
d𝑥
d𝑡
𝑧 + 𝑥

d𝑧
d𝑡

=
𝑐𝑥
𝐻m

𝑧 − 𝑥
𝑐𝑧
𝐻m

= 0 

which again implies that 𝑥𝑧 = const. Fixing the constant by the initial conditions, again 
leads to the result that 𝑧 = 𝐻m𝑥𝑖/𝑥. 

0.9 

 

3.6 
At the ice divide, 𝑥 = 0, the flow will be completely vertical, and the 𝑡-dependence of 𝑧 
found in 3.5 can be inverted to find 𝜏(𝑧). One finds that 𝜏(𝑧) = 𝐻m

𝑐
ln �𝐻m

𝑧
�. 1.0 
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3.7a 

The present interglacial period extends to a depth of 1492 m, corresponding to 11,700 
year. Using the formula for 𝜏(𝑧)from problem 3.6, one finds the following accumulation 
rate for the interglacial: 

𝑐ig =
𝐻m

11,700 years
ln �

𝐻m
𝐻m − 1492 m

� = 0.1749 m/year. 

 
The beginning of the ice age 120,000 years ago is identified as the drop in 𝛿 O 18  in 
figure 3.2b at a depth of 3040 m. Using the vertical flow velocity found in problem 3.4, 
on has d𝑧

𝑧
= − 𝑐

𝐻m
d𝑡, which can be integrated down to a depth of 3040 m, using a 

stepwise constant accumulation rate: 
 

𝐻m ln �
𝐻m

𝐻m − 3040 m
� = −𝐻m�

1
𝑧

𝐻m−3040 m

𝐻m
d𝑧 

 

                                         = � 𝑐ia d𝑡
120,000 year

11,700 year
+ � 𝑐ig d𝑡

11,700 year

0
 

                                          = 𝑐ia(120,000 year-11,700 year)+𝑐ig11,700 year 
 

Isolating form this equation leads to 𝑐ia = 0.1232, i.e. far less precipitation than now. 

0.8 

3.7b 
Reading off from figure 3.2b:  𝛿 O 

18  changes from −43,5 ‰ to −34,5 ‰. Reading off 
from figure 3.2a,  𝑇 then changes from −40 ℃ to −28 ℃. This gives ∆𝑇 ≈ 12 ℃. 

0.2 

 

3.8 

From the area 𝐴G one finds that 𝐿 = �𝐴G/10 = 4.14 × 105 m. Inserting numbers in 
the volume formula found in 3.2c, one finds that: 

𝑉G,ice =
20
3
𝐿5/2�

2𝑆b
𝜌ice𝑔

= 3.45 × 1015 m3 

This ice volume must be converted to liquid water volume, by equating the total masses, 
i.e. 𝑉G,wa = 𝑉G,ice

𝜌ice
𝜌wa

= 3.17 × 1015 m3, which is finally converted to a sea level rise, 

as ℎG,rise = 𝑉G,wa
𝐴o

= 8.79 m. 

0.6 
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3.
9 

  
Figure 3.S1 Geometry of the ice ball (white circle) with a test mass 𝑚 (small gray circle). 

The total mass of the ice is 
 

𝑀ice = 𝑉G,ice 𝜌ice = 3.17 × 1018 kg = 5.31 × 10−7𝑚E 
 

The total gravitational potential felt by a test mass 𝑚 at a certain height ℎ above the surface 
of the Earth, and at a polar angle 𝜃 (cf. figure 3.S1), with respect to a rotated polar axis 
going straight through the ice sphere is found by adding that from the Earth with that from 
the ice: 

𝑈tot = −
𝐺𝑚E𝑚
𝑅E + ℎ

−
𝐺𝑀ice𝑚

𝑟
= −𝑚𝑔𝑅𝐸 �

1
1 + ℎ/𝑅𝐸

+
𝑀𝑖𝑐𝑒/𝑚𝐸

𝑟/𝑅𝐸
� 

where 𝑔 = 𝐺𝑚𝐸/𝑅𝐸2. Since ℎ/𝑅E ≪ 1 one may use the approximation given in the 
problem, (1 + x)−1 ≈ 1 − 𝑥,   |𝑥| ≪ 1, to approximate this by 

𝑈tot ≈ −𝑚𝑔𝑅𝐸 �1 −
ℎ
𝑅𝐸

+
𝑀𝑖𝑐𝑒/𝑚𝐸

𝑟/𝑅𝐸
�. 

Isolating ℎ now shows that ℎ = ℎ0 + 𝑀𝑖𝑐𝑒/𝑚𝐸
𝑟/𝑅𝐸

𝑅𝐸, where ℎ0 = 𝑅𝐸 + 𝑈tot/(𝑚𝑔). Using 
again that ℎ/𝑅E ≪ 1, trigonometry shows that 𝑟 ≈ 2𝑅E|sin(𝜃/2)|, and one has: 
 

ℎ(𝜃) − ℎ0 ≈
𝑀ice/𝑚E

2|sin(𝜃/2)|𝑅𝐸 ≈
1.69 m

|sin(𝜃/2)|. 
 

To find the magnitude of the effect in Copenhagen, the distance of 3500 km along the 
surface is used to find the angle 𝜃CPH = (3.5 × 106 m)/𝑅𝐸 ≈ 0.549, corresponding to 
ℎCPH − ℎ0 ≈ 6.25 m. Directly opposite to Greenland corresponds to 𝜃 = 𝜋, which gives 
ℎOPP − ℎ0 ≈ 1.69 m. The difference is then ℎCPH − ℎOPP ≈ 4.56 m, where ℎ0 has dropped 
out. 
 
 
 

1.
6 
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Figure 3.S2 Same figure as above, but with the relevant forces depicted and showed again 
outside figure for clarity. The blue dotted line indicates the Earth surface. The blue dashed line 
indicates the local sea level, growing towards Greenland and decreasing towards the south pole. 

 
Approach with forces: 
 
This problem can also be solved using forces. The basic equations for mechanical 
equilibrium of the test particle is then a simple matter of balancing the two gravitational 
forces, �⃗�𝐸 and �⃗�𝐺 , with the reaction force from the Earth, �⃗�𝑅. Given the angles indicated in 
Figure 3.S2, the force balance along locally vertical and horizontal directions, respectively, 
read 

𝐹𝐸 + 𝐹𝐺 cos(𝛿) = 𝐹𝑅 cos(𝜑) 
and 

𝐹𝐺 sin(𝛿) = 𝐹𝑅 sin(𝜑) 
 
which can be divided to obtain (using that 𝛿 = 𝜋/2 − 𝜃/2): 
 

tan(𝜑) =
𝐹𝐺 sin(𝛿)

𝐹𝐸 + 𝐹𝐺 cos(𝛿)
 

              =
𝐹𝐺
𝐹𝐸

cos(𝜃/2)
1

1 + (𝐹𝐺/𝐹𝐸)sin(𝜃/2)
 

              ≈
𝐹𝐺
𝐹𝐸

cos(𝜃/2) 

              =
𝑀𝑖𝑐𝑒/𝑚𝐸

(𝑟/𝑅𝐸)2
cos(𝜃/2) 

              =
𝑀𝑖𝑐𝑒/𝑚𝐸

4 sin2(𝜃/2)
cos(𝜃/2) 

 
where we have plugged in the gravitational forces and the relevant distances. We have also 
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approximated the fraction, using that  𝑀𝑖𝑐𝑒/𝑚𝐸 = 5.31 × 10−7 ≪ 1, which is only valid 
not too close to Greenland, i.e. for a certain size of 𝜃.  Since the local sea surface will be 
perpendicular to the reaction force, it is seen from figure 3.S2 that 
 

tan(𝜑) =
dℎ
d𝑥

=
dℎ
d𝜃

d𝜃
d𝑥

=
1
𝑅𝐸

dℎ
d𝜃

 

whereby 
dℎ
d𝜃

= 𝑅𝐸
𝑀𝑖𝑐𝑒/𝑚𝐸

4 sin2(𝜃/2)
cos(𝜃/2) 

 
The difference in sea levels in Copenhagen and opposite to Greenland can now be obtained 
by integrating this expression. That is 
 

ℎCPH − ℎOPP = 𝑅𝐸
𝑀𝑖𝑐𝑒

𝑚𝐸
�

cos(𝜃/2)
4 sin2(𝜃/2)

 d𝜃
𝜃𝐶𝑃𝐻

𝜋
 

= 𝑅𝐸
𝑀𝑖𝑐𝑒

2 𝑚𝐸
� q−2 d𝑞
sin(𝜃𝐶𝑃𝐻/2)

1
 

= 𝑅𝐸
𝑀𝑖𝑐𝑒

2 𝑚𝐸
�

1
sin(𝜃𝐶𝑃𝐻/2)

− 1� 

 
where we have made the substitution 𝑞 = sin(𝜃/2). Plugging in the numbers found above, 
we obtain again ℎCPH − ℎOPP ≈ 4.56. Note that this solution strategy necessarily involves 
consideration of tangential force components alongside with the radial components. 
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