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Problem 1 
Solution 

Part A 
Consider the forces acting on the puck and the cylinder and 

depicted in the figure on the right. The puck is subject to the 

gravity force 𝑚𝑔 and the reaction force from the cylinder 𝑁. The 

cylinder is subject to the gravity force 𝑀𝑔, the reaction force from 

the plane 𝑁1, the friction force 𝐹𝑓𝑟  and the pressure force from the 

puck 𝑁′ = −𝑁. The idea is to write the horizontal projections of 

the equations of motion. It is written for the puck as follows  

  𝑚𝑎𝑥 = 𝑁 sin𝛼,  (A.1) 

where 𝑎𝑥  is the horizontal projection of the puck acceleration. 

For the cylinder the equation of motion with the 

acceleration 𝑤 is found as 

  𝑀𝑤 = 𝑁 sin𝛼 − 𝐹𝑓𝑟 .  (A.2) 

Since the cylinder moves along the plane without sliding its 

angular acceleration is obtained as 

  휀 = 𝑤/𝑅         (A.3) 

Then the equation of rotational motion around the center of mass of the cylinder takes the form 

  𝐼휀 = 𝐹𝑓𝑟𝑅,         (A.4) 

where the inertia moment of the hollow cylinder is given by 

  𝐼 = 𝑀𝑅2.         (A.5) 

Solving (A.2)-(A.5) yields 

  2𝑀𝑤 = 𝑁 sin𝛼.        (A.6) 

From equations (A.1) and (A.6) it is easily concluded that 

  𝑚𝑎𝑥 = 2𝑀𝑤.         (A.7) 

Since the initial velocities of the puck and of the cylinder are both equal to zero, then, it follows from 

(A.7) after integrating that 

  𝑚𝑢 = 2𝑀𝑣.         (A.8) 

It is obvious that the conservation law for the system is written as 

  𝑚𝑔𝑅 =
𝑚𝑢2

2
+

𝑀𝑣2

2
+

𝐼𝜔2

2
,       (A.9) 

where the angular velocity of the cylinder is found to be 

  𝜔 =
𝑣

𝑅
,          (A.10) 

since it does not slide over the plane. 

Solving (A.8)-(A.10) results in velocities at the lowest point of the puck trajectory written as 

  𝑢 = 2 
𝑀𝑔𝑅

(2𝑀+𝑚)
,        (A.12) 

  𝑣 =
𝑚

𝑀
 

𝑀𝑔𝑅

(2𝑀+𝑚)
.        (A.13) 

In the reference frame sliding progressively along with the cylinder axis, the puck moves in a circle 

of radius 𝑅 and, at the lowest point of its trajectory, have the velocity  

  𝑣𝑟𝑒𝑙 = 𝑢 + 𝑣         (A.14) 

and the acceleration 

  𝑎rel =
𝑣rel

2

𝑅
.         (A.15) 

At the lowest point of the puck trajectory the acceleration of the cylinder axis is equal to zero, 

therefore, the puck acceleration in the laboratory reference frame is also given by (A.15). 

  𝐹 −𝑚𝑔 =
𝑚𝑣𝑟𝑒𝑙

2

𝑅
.        (A.16) 

then the interaction force between the puck and the cylinder is finally found as 

  𝐹 = 3𝑚𝑔  1 +
𝑚

3𝑀
 .        (A.17) 
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Part B 
1) According to the first law of thermodynamics, the amount of heat transmitted 𝛿𝑄 to the gas in the 

bubble is found as 

  𝛿𝑄 = 𝑣𝐶𝑉𝑑𝑇 + 𝑝𝑑𝑉,        (B.1) 

where the molar heat capacity at arbitrary process is as follows 

  𝐶 =
1

𝑣

𝛿𝑄

𝑑𝑇
= 𝐶𝑉 +

𝑝

𝑣

𝑑𝑉

𝑑𝑇
.        (B.2) 

Here 𝐶𝑉  stands for the molar heat capacity of the gas at constant volume, 𝑝 designates its pressure, 𝑣 is the 

total amount of moles of gas in the bubble, 𝑉 and 𝑇 denote the volume and temperature of the gas, 

respectively. 

Evaluate the derivative standing on the right hand side of (B.2). According to the Laplace formula, 

the gas pressure inside the bubble is defined by 

  𝑝 =
4𝜍

𝑟
,         (B.3) 

thus, the equation of any equilibrium process with the gas in the bubble is a polytrope of the form 

  𝑝3𝑉 = const.         (B.4) 

The equation of state of an ideal gas has the form 

  𝑝𝑉 = 𝑣𝑅𝑇,         (B.5) 

and hence equation (B.4) can be rewritten as 

  𝑇3𝑉−2 = const.        (B.6) 

 Differentiating (B.6) the derivative with respect to temperature sought is found as 

  
𝑑𝑉

𝑑𝑇
=

3𝑉

2𝑇
.         (B.7) 

 Taking into account that the molar heat capacity of a diatomic gas at constant volume is 

  𝐶𝑉 =
5

2
𝑅,         (B.8) 

and using (B.5) it is finally obtained that 

  𝐶 = 𝐶𝑉 +
3

2
𝑅 = 4𝑅 = 33.2 

J

mole ∙K
.      (B.9) 

2) Since the heat capacity of the gas is much smaller than the heat capacity of the soap film, and 

there is heat exchange between them, the gas can be considered as isothermal since the soap film plays the 

role of thermostat. Consider the fragment of soap film, limited by the angle 𝛼 as shown in the figure. It's 

area is found as 

  𝑆 = 𝜋(𝛼𝑟)2.         (B.10) 

and the corresponding mass is obtained as 

  𝑚 = 𝜌𝑆.         (B.11)  

Let 𝑥 be an increase in the radius of the bubble, then the 

Newton second law for the fragment of the soap film mentioned 

above takes the form 

  𝑚𝑥 = 𝑝′𝑆′ − 𝐹𝑠𝑢𝑟𝑓 ,   (B.12) 

where 𝐹𝑠𝑢𝑟𝑓  denotes the projection of the resultant surface tension 

force acting in the radial direction, 𝑝′ stands for the gas pressure 

beneath the surface of the soap film and 

𝑆′ = 𝑆  1 + 2
𝑥

𝑟
 . 

𝐹𝑠𝑢𝑟𝑓  is easily found as 

  𝐹𝑠𝑢𝑟𝑓 = 𝐹𝑆𝑇𝛼 = 𝜍 ∙ 2 ∙ 2𝜋[ 𝑟 + 𝑥 𝛼] ∙ 𝛼. (B.13) 

Since the gaseous process can be considered isothermal, it is 

written that 

  𝑝′𝑉 ′ = 𝑝𝑉.    (B.14) 

Assuming that the volume increase is quite small, (B.14) yields 

  𝑝′ = 𝑝
1

 1+
𝑥

𝑟
 

3 ≈ 𝑝
1

 1+
3𝑥

𝑟
 
≈ 𝑝  1 −

3𝑥

𝑟
 .     (B.15) 

Thus, from (B.10) - (B.16) and (B.3) the equation of small oscillations of the soap film is derived as 

  𝜌𝑥 = −
8𝜍

𝑟2
𝑥         (B.16) 
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with the frequency 

  𝜔 =  
8𝜍

𝜌𝑟2
= 108 s−1.       (B.17) 

Part C 
 The problem can be solved in different ways. Herein several possible solutions are considered. 

Method 1. Direct approach 

At the moment when the current in the coils is a maximum, the total voltage across the coils is equal 

to zero, so the capacitor voltages must be equal in magnitude and opposite in polarity. Let 𝑈 be a voltage on 

the capacitors at the time moment just mentioned and 𝐼0 be that maximum current. According to the law of 

charge conservation 

  𝑞0 = 2𝐶𝑈 + 𝐶𝑈,        (C1.1) 

thus, 

   𝑈 =
𝑞0

3𝐶
.         (C1.2) 

Then, from the energy conservation law 

   
𝑞0

2

2∙2𝐶
=

𝐿𝐼0
2

2
+

2𝐿𝐼0
2

2
+

𝐶𝑈2

2
+

2𝐶𝑈2

2
      (C1.3) 

the maximum current is found as 

   𝐼0 =
𝑞0

3 2𝐿𝐶
.         (C1.4) 

After the key 𝐾 is shortened there will be independent oscillations in both circuits with the frequency 

   𝜔 =
1

 2𝐿𝐶
,         (C1.5) 

and their amplitudes are obtained from the corresponding energy conservation laws written as 

   
2𝐶𝑈2

2
+

𝐿𝐼0
2

2
=

𝐿𝐽1
2

2
,        (C1.6) 

   
𝐶𝑈2

2
+

2𝐿𝐼0
2

2
=

2𝐿𝐽2
2

2
.        (C1.7) 

Hence, the corresponding amplitudes are found as 

   𝐽1 =  5𝐼0,      (C1.8) 

   𝐽2 =  2𝐼0.      (C1.9) 

Choose the positive directions of the currents in the circuits as shown in the 

figure on the right. Then, the current flowing through the key is written as follows 

   𝐼 = 𝐼1 − 𝐼2.      (C1.10) 

The currents depend on time as 

   𝐼1 𝑡 = 𝐴 cos𝜔𝑡 + 𝐵 sin𝜔𝑡,    (C1.11) 

   𝐼2 𝑡 = 𝐷 cos𝜔𝑡 + 𝐹 sin𝜔𝑡,    (C1.12) 

The constants 𝐴,𝐵,𝐷,𝐹 can be determined from the initial values of the currents and their 

amplitudes by putting down the following set of equations 

   𝐼1 0 = 𝐴 = 𝐼0,        (C1.13) 

   𝐴2 + 𝐵2 = 𝐽1
2,         (C1.14) 

   𝐼2 0 = 𝐷 = 𝐼0,        (C1.15) 

   𝐷2 + 𝐹2 = 𝐽2
2.         (C1.16) 

Solving (C1.13)-(C1.16) it is found that 

   𝐵 = 2𝐼0,         (C1.17) 

   𝐹 = −𝐼0,         (C1.18) 

The sign in 𝐹 is chosen negative, since at the time moment of the key shortening the current in the coil 2𝐿 

decreases. 

Thus, the dependence of the currents on time takes the following form 

   𝐼1 𝑡 = 𝐼0(cos𝜔𝑡 + 2 sin𝜔𝑡),      (C1.19) 

   𝐼2 𝑡 = 𝐼0(cos𝜔𝑡 − sin𝜔𝑡).       (C1.20) 

In accordance with (C.10), the current in the key is dependent on time according to 

   𝐼 𝑡 = 𝐼1 𝑡 − 𝐼2 𝑡 = 3𝐼0 sin𝜔𝑡.      (C1.21) 

Hence, the amplitude of the current in the key is obtained as 

   𝐼max = 3𝐼0 = 𝜔𝑞0 =
𝑞0

 2𝐿𝐶
.       (C1.22)  
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Method 2. Vector diagram 

Instead of determining the coefficients 𝐴,𝐵,𝐷,𝐹 the vector diagram shown 

in the figure on the right can be used. The segment 𝐴𝐶 represents the current sought 

and its projection on the current axis is zero at the time of the key shortening. The 

current 𝐼1 in the coil of inductance 𝐿 grows at the same time moment because the 

capacitor 2𝐶 continues to discharge, thus, this current is depicted in the figure by 

the segment 𝑂𝐴. The current 𝐼2 in the coil of inductance 2𝐿 decreases at the time of 

the key shortening since it continues to charge the capacitor 2𝐶, that is why this 

current is depicted in the figure by the segment 𝑂𝐶.   

It is known for above that 𝑂𝐵 = 𝐼0,𝑂𝐴 =  5𝐼0,𝑂𝐶 =  2𝐼0. Hence, it is 

found from the Pythagorean theorem that 

   𝐴𝐵 =  𝑂𝐴2 − 𝑂𝐵2 = 2𝐼0,    (C2.1) 

   𝐵𝐶 =  𝑂𝐶2 − 𝑂𝐵2 = 𝐼0,    (C2.2) 

Thus, the current sought is found as 

   𝐼max = 𝐴𝐶 = 𝐴𝐵 + 𝐵𝐶 = 3𝐼0 = 𝜔𝑞0 =
𝑞0

 2𝐿𝐶
.    (C2.3) 

 

Method 3. Heuristic approach 

It is clear that the current through the key performs harmonic oscillations with the frequency 

   𝜔 =
1

 2𝐿𝐶
.         (C3.1) 

and it is equal to zero at the time of the key shortening, i.e. 

   𝐼 𝑡 = 𝐼max sin𝜔𝑡.        (C3.2) 

Since the current is equal to zero at the time of the key shortening, then the current amplitude is equal 

to the current derivative at this time moment divided by the oscillation frequency. Let us find that current 

derivative. Let the capacitor of capacitance 2𝐶 have the charge 𝑞1. Then the charge on the capacitor of 

capacitance 𝐶 is found from the charge conservation law as 

   𝑞2 = 𝑞0 − 𝑞1.         (C3.3) 

After shortening the key the rate of current change in the coil of inductance 𝐿 is obtained as 

   𝐼 1 =
𝑞1

2𝐿𝐶
,         (C3.4) 

whereas in the coil of inductance 2𝐿 it is equal to 

   𝐼 2 = −
𝑞0−𝑞1

2𝐿𝐶
.         (C3.5) 

Since the voltage polarity on the capacitors are opposite, then the current derivative with respect to 

time finally takes the form 

   𝐼 = 𝐼 1 − 𝐼 2 =
𝑞0

2𝐿𝐶
= 𝜔2𝑞0.       (C3.6) 

Note that this derivative is independent of the time of the key shortening!  

Hence, the maximum current is found as 

   𝐼max =
𝐼 

𝜔
= 𝜔𝑞0 =

𝑞0

 2𝐿𝐶
,       (C3.7) 

and it is independent of the time of the key shortening! 
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Problem 2.Van der Waals equation of state 
Solution 

Part А. Non-ideal gas equation of state 
A1.If 𝑉 = 𝑏is substituted into the equation of state, then the gas pressure turns infinite. It is obvious that this 

is the moment when all the molecules are tightly packed. Therefore, the parameter 𝑏 is approximately equal 

to the volume of all molecules, i.e. 

    𝑏 = 𝑁𝐴𝑑
3        (A1.1) 

A2.In the most general case thevan der Waals equation of state can be rewritten as 

   𝑃𝑐𝑉
3 −  𝑅𝑇𝑐 + 𝑏𝑃𝑐 𝑉

2 + 𝑎𝑉 − 𝑎𝑏 = 0    (A2.1). 

Since at the critical values of the gas parameters the straight line disappears, then, the solution of 

(A2.1) must have one real triple root, i.e. it can be rewritten as follows 

   𝑃𝑐(𝑉− 𝑉𝑐)
3 = 0       (A2.2). 

Comparing the coefficients of expression (A2.1) and (A2.2), the following set of equations is 

obtained 

 

3𝑃𝑐𝑉𝑐 = 𝑅𝑇𝑐 + 𝑏𝑃𝑐
3𝑃𝑐𝑉𝑐

2 = 𝑎

𝑃𝑐𝑉𝑐
3 = 𝑎𝑏

       (A2.3). 

Solution to the set (A2.3) is the following formulas for the van der Waals coefficients 

   𝑎 =
27𝑅2𝑇𝑐

2

64𝑃𝑐
        (A2.4), 

   𝑏 =
𝑅𝑇𝑐

8𝑃𝑐
        (A2.5). 

Alternative solution 

The critical parameters are achieved in the presence of an inflection point in the isotherm, at which 

the first and second derivatives are both zero. Therefore, they are defined by thefollowingconditions 

    
𝑑𝑃

𝑑𝑉
 
𝑇
= 0        (A2.6), 

and 

    
𝑑2𝑃

𝑑𝑉2
 
𝑇
= 0        (A2.7). 

Thus, the following set of equations is obtained 

   

 
 
 

 
 −

𝑅𝑇𝑐
 𝑉𝑐−𝑏 2

+
2𝑎

𝑉𝑐
3 = 0

2𝑅𝑇𝑐
 𝑉𝑐−𝑏 3

−
6𝑎

𝑉𝑐
4 = 0

 𝑃𝑐 +
𝑎

𝑉𝑐
2  𝑉𝑐 − 𝑏 = 𝑅𝑇𝑐

       (A2.8), 

which has the same solution (A2.4) and (A2.5). 

A3.Numericalcalculationsforwaterproduce the following result 

   𝑎𝑤 = 0.56
m6∙Pa

mole2
       (A3.1). 

   𝑏𝑤 = 3.1 ∙ 10−5
m3

mole
       (A3.2). 

A4.From equations (A1.4) and (A3.2) it is found that 

   𝑑𝑤 =  
𝑏

𝑁𝐴

3
= 3.7 ∙ 10−10m ≈ 4 ∙ 10−10m    (A4.1). 

 

Part B. Properties of gas and liquid 

B1.Usingtheinequality𝑉𝐺 ≫ 𝑏, the van der Waals equation of state can be written as 

    𝑝0 +
𝑎

𝑉𝐺
2 𝑉𝐺 = 𝑅𝑇       (B1.1), 

which has the following solutions 

   𝑉𝐺 =
𝑅𝑇

2𝑝0
 1± 1−

4𝑎𝑝0

𝑅2𝑇2
       (B1.2). 
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Smaller root in (B1.2) gives the volume in an unstable state on the rising branch of thevan der Waals 

isotherm. The volume of gas is given by the larger root, since at 𝑎 = 0an expression for the volume of an 

ideal gasshould be obtained, i.e. 

   𝑉𝐺 =
𝑅𝑇

2𝑝0
 1 + 1−

4𝑎𝑝0

𝑅2𝑇2
       (B1.3). 

For given values of the parameters the value
𝑎𝑝0
 𝑅𝑇 2

= 5.8 ∙ 10−3. It can therefore be assumed 

that
𝑎𝑝0
 𝑅𝑇 2

≪ 1, then (B1.3)takes the form 

   𝑉𝐺 ≈
𝑅𝑇

𝑝0
 1−

𝑎𝑝0

𝑅2𝑇2
 =

𝑅𝑇

𝑝0
−

𝑎

𝑅𝑇
      (B1.4). 

B2. For an ideal gas 

   𝑉𝐺0 =
𝑅𝑇

𝑝0
        (B2.1), 

hence, 

    
∆𝑉𝐺
𝑉𝐺0

 =
𝑉𝐺0−𝑉𝐺
𝑉𝐺0

=
1

2
 1− 1−

4𝑎𝑝0

𝑅2𝑇2
 ≈

𝑎𝑝0

𝑅2𝑇2
= 0.58%.  (B2.2) 

B3.Mechanical stability of a thermodynamic system is inpower provided that 

    
𝑑𝑃

𝑑𝑉
 
𝑇
< 0.        (B3.1) 

The minimum volume, in which the mattercan still exist in the gaseous state, corresponds to a point 

in which 

   𝑉𝐺𝑚𝑖𝑛 →  
𝑑𝑃

𝑑𝑉
 
𝑇
= 0       (B3.2). 

Using the van der Waals equation of state (B3.2) is written as 

    
𝑑𝑃

𝑑𝑉
 
𝑇
= −

𝑅𝑇

(𝑉−𝑏)2
+

2𝑎

𝑉3
= 0      (B3.3). 

From (B3.2) and (B3.3), and with the help of𝑉𝐺𝑚𝑖𝑛 ≫ 𝑏, it is found that 

   𝑉𝐺𝑚𝑖𝑛 =
2𝑎

𝑅𝑇
        (B3.4). 

Thus, 
𝑉𝐺

𝑉𝐺𝑚𝑖𝑛
=

𝑅2𝑇2

2𝑎𝑝0
= 86       (B3.5). 

B4. Usingtheinequality𝑃 ≪ 𝑎/𝑉2, the van der Waals equation of state is written as 

   
𝑎

𝑉𝐿
2  𝑉𝐿 − 𝑏 = 𝑅𝑇,       (B4.1) 

whose solution is  

   𝑉𝐿 =
𝑎

2𝑅𝑇
 1± 1−

4𝑏𝑅𝑇

𝑎
       (B4.2). 

In this case, the smaller root shouldbe taken, since at𝑇 → 0the liquid volume𝑉𝐿 = 𝑏 must be obtained 

according to (B4.1), i.e. 

   𝑉𝐿 =
𝑎

2𝑅𝑇
 1− 1−

4𝑏𝑅𝑇

𝑎
 ≈ 𝑏  1 +

𝑏𝑅𝑇

𝑎
 .    (B4.3). 

B5. Since (B4.3) givesthevolumeoftheonemoleofwaterits mass density is easily found as 

   𝜌𝐿 =
𝜇

𝑉𝐿
=

𝜇

𝑏 1+
𝑏𝑅𝑇

𝑎
 
≈

𝜇

𝑏
= 5.8 ∙ 102

kg

m3
    (B5.1). 

B6. Inaccordancewith (B4.3) the volume thermal expansion coefficient is derived as 

   𝛼 =
1

𝑉𝐿

∆𝑉𝐿

∆𝑇
=

𝑏𝑅

𝑎+𝑏𝑅𝑇
≈

𝑏𝑅

𝑎
= 4.6 ∙ 10−4К−1    (B6.1). 

B7.The heat, required to convert the liquid to gas, is used to overcome the intermolecular forces that create 

negative pressure 𝑎/𝑉2, therefore, 

   𝐸 = 𝐿𝜇 ≈  
𝑎

𝑉2
𝑑𝑉 = 𝑎  

1

𝑉𝐿
−

1

𝑉𝐺
 

𝑉𝐺

𝑉𝐿
     (B7.1), 

and using𝑉𝐺 ≫ 𝑉𝐿, (B7.1) yields

    𝐿 =
𝑎

𝜇𝑉𝐿
=

𝑎

𝜇𝑏  1+
𝑏𝑅𝑇

𝑎
 
≈

𝑎

𝜇𝑏
= 1.0 ∙ 106

J

kg
    (B7.2). 
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B8.Consider some water of volume𝑉. To make a monolayer of thickness 𝑑 out of it, the following work 

must be done 

    𝐴 = 2𝜎𝑆        (B8.1). 

Fabrication of the monomolecular layer may be interpreted as the evaporation of an equivalent 

volume of water which requires the following amount of heat 

    𝑄 = 𝐿𝑚        (B8.2), 

where the mass is given by 

    𝑚 = 𝜌𝑆𝑑        (B8.3). 

Using (A4.1a), (B5.1)and(B7.2), one finally gets 

    𝜎 =
𝑎

2𝑏2
𝑑𝑤 = 0.12 ∙ 10−2

N

m
      (B8.4). 

 

Part С. Liquid-gas systems 

C1.At equilibrium, the pressure in the liquid and gas should be equalat all depths. The pressure𝑝in the fluid 

at the depth ℎis related to the pressure of saturated vapor above the flat surface by 

   𝑝 = 𝑝0 + 𝜌𝐿𝑔ℎ       (C1.1). 

The surface tension creates additional pressure defined by the Laplace formula as 

   ∆𝑝𝐿 =
2𝜎

𝑟
        (C1.2). 

The same pressure𝑝inthefluidatthedepthℎ depends on the vapor pressure 𝑝ℎ over the curved liquid 

surface and its radiusofcurvature as 

   𝑝 = 𝑝ℎ +
2𝜎

𝑟
        (C1.3). 

Furthermore, the vapor pressure at different heights are related by 

   𝑝ℎ = 𝑝0 + 𝜌𝑆𝑔ℎ       (C1.4). 

Solving (C1.1)-(C1.4), it is found that 

   ℎ =
2𝜎

(𝜌𝐿−𝜌𝑆)𝑔𝑟
        (C1.5). 

Hence,the pressure difference sought is obtained as 

   ∆𝑝𝑇 = 𝑝ℎ − 𝑝0 = 𝜌𝑆𝑔ℎ =
2𝜎

𝑟

𝜌𝑆

𝜌𝐿−𝜌𝑆
≈

2𝜎

𝑟

𝜌𝑆

𝜌𝐿
.    (C1.6). 

Note that the vapor pressure over the convex surface of the liquid is larger than the pressure above 

the flat surface. 

C2.Let 𝑃𝑒be vapor pressure at a temperature 𝑇𝑒, and 𝑃𝑒 − ∆𝑃𝑒be vapor pressure at a temperature 𝑇𝑒 − ∆𝑇𝑒.  
In accordance with equation (3) from problem statement, whentheambient temperature falls by an amount of 

∆𝑇𝑒 the saturated vapor pressure changes by an amount 

    ∆𝑃𝑒 = 𝑃𝑒
𝑎

𝑏𝑅𝑇𝑒
2 ∆𝑇𝑒        (C2.1). 

In accordance with the Thomson formula obtained in part C1, the pressure of saturated vapor above 

the droplet increases by the amountof ∆𝑝𝑇. While a droplet is small in size, the vapor above its surface 

remains unsaturated. Whena droplet hasgrownuptoacertainminimumsize, thevaporaboveitssurface turns 

saturated. 

Since the pressure remains unchanged, the following condition must hold 

   𝑃𝑒 − ∆𝑃𝑒 + ∆𝑝𝑇 = 𝑃𝑒       (C2.2). 

Assuming the vapor is almost ideal gas, its density can be found as 

   𝜌𝑆 =
𝜇𝑃𝑒
𝑅𝑇𝑒

≪ 𝜌𝐿        (C2.3). 

From equations (C2.1)-(C2.3), (B5.1) and (C1.6) one finds 

   
2𝜎

𝑟

𝜇𝑃𝑒

𝑅𝑇𝑒 
𝜇

𝑏
 
= 𝑃𝑒

𝑎∆𝑇𝑒

𝑏𝑅𝑇𝑒
2       (C2.4). 

Thus, it is finally obtained that 

   𝑟 =
2𝜎𝑏2𝑇𝑒

𝑎∆𝑇𝑒
= 1.5 ∙ 10−8m      (C2.5). 
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Problem 3. Simplest model of gas discharge 

Solution 

Part А. Non-self-sustained gas discharge 

A1.Let us derive an equation describing the change of the electron number density with time. It is 

determined by the two processes; the generation of ion pairs by external ionizer and the recombination of 

electrons with ions. At ionization process electrons and ions are generated in pairs, and at recombination 

processthey disappear in pairs as well.Thus, their concentrations are alwaysequal at any given time, i.e. 

  𝑛 𝑡 = 𝑛𝑒 𝑡 = 𝑛𝑖(𝑡)       (A1.1). 

Then the equation describing the numberdensityevolution of electrons and ions in time can be written 

as 

  
𝑑𝑛 (𝑡)

𝑑𝑡
= 𝑍𝑒𝑥𝑡 − 𝑟𝑛(𝑡)2       (A1.2). 

It is easy to show that at𝑡 → 0 the function tanh𝑏𝑡 → 0, therefore, by virtue of the initial condition 

𝑛 0 = 0,one finds 

  𝑛0 = 0          (A1.3). 

Substituting 𝑛𝑒 𝑡 = 𝑎 tanh𝑏𝑡 in (A1.2) and separating it in the independent functions (hyperbolic, 

or 1 and𝑒𝑥 ), one gets 

  𝑎 =  
𝑍𝑒𝑥𝑡

𝑟
         (A1.4), 

  𝑏 =  𝑟𝑍𝑒𝑥𝑡          (A1.5). 

A2.According to equation (A1.4) the number density of electronsat steady-state is expressed in terms of the 

external ionizer activity as 

  𝑛𝑒1 =  
𝑍𝑒𝑥𝑡 1

𝑟
         (A2.1), 

  𝑛𝑒2 =  
𝑍𝑒𝑥𝑡 2

𝑟
         (A2.2), 

  𝑛𝑒 =  
𝑍𝑒𝑥𝑡 1+𝑍𝑒𝑥𝑡 2

𝑟
        (A2.3). 

Thus,the following analogue of the Pythagorean theorem is obtained as 

  𝑛𝑒 =  𝑛𝑒1
2 + 𝑛𝑒2

2 = 20.0 ∙ 1010cm−3.     (A2.4) 

A3.In the steady state, the balance equations of electrons and ions in the tube volume take the form 

   𝑍𝑒𝑥𝑡 𝑆𝐿 = 𝑟𝑛𝑒𝑛𝑖𝑆𝐿 +
𝐼𝑒

𝑒
       (A3.1), 

   𝑍𝑒𝑥𝑡 𝑆𝐿 = 𝑟𝑛𝑒𝑛𝑖𝑆𝐿 +
𝐼𝑖

𝑒
       (A3.2). 

It follows from equations (A3.1) and (A3.2) that the ion and electron currents are equal, i.e. 

   𝐼𝑒 = 𝐼𝑖           (A3.3). 

At the same time the total current in each tube section is the sum of the electron and ion currents 

   𝐼 = 𝐼𝑒 + 𝐼𝑖          (A3.4). 

By definition ofthe current density the following relations hold 

   𝐼𝑒 =
𝐼

2
= 𝑒𝑛𝑒𝑣𝑆 = 𝑒𝛽𝑛𝑒𝐸𝑆       (A3.5), 

   𝐼𝑖 =
𝐼

2
= 𝑒𝑛𝑖𝑣𝑆 = 𝑒𝛽𝑛𝑖𝐸𝑆       (A3.6). 

Substituting (A3.5) and (A3.6) into (A3.1) and (A3.2), the following quadratic equation for the 

current is derived 

   𝑍𝑒𝑥𝑡 𝑆𝐿 = 𝑟𝑆𝐿  
𝐼

2𝑒𝛽𝐸𝑆
 
2

+
𝐼

2𝑒
       (A3.7). 

The electric field strength in the gas is equal to 

   𝐸 =
𝑈

𝐿
          (A3.8). 

and solution to the quadratic equation (A3.7) takes the form 

   𝐼 =
𝑒𝛽2𝑈2𝑆

𝑟𝐿3
 −1± 1 +

4𝑟𝑍𝑒𝑥𝑡 𝐿4

𝛽2𝑈2
       (A3.9). 
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It is obvious that only positive root does make sense, i.e. 

   𝐼 =
𝑒𝛽2𝑈2𝑆

𝑟𝐿3
  1 +

4𝑟𝑍𝑒𝑥𝑡 𝐿4

𝛽2𝑈2
− 1       (A3.10). 

A4.At low voltages (A3.10) simplifies and gives the following expression 

   𝐼 = 2𝑈𝑒𝛽 
𝑍𝑒𝑥𝑡

𝑟

𝑆

𝐿
.        (A4.1) 

which is actually the Ohm law. 

Using the well-known relation 

   𝑅 =
𝑈

𝐼
          (A4.2) 

together with 

   𝑅 = 𝜌
𝐿

𝑆
         (A4.3), 

one gets 

   𝜌 =
1

2𝑒𝛽
 

𝑟

𝑍𝑒𝑥𝑡
         (A4.4). 

Part B. Self-sustained gas discharge 

B1.Consider a gas layer located between 𝑥and𝑥 + 𝑑𝑥.The rate of change in the electron number inside the 

layer due to the electric current is givenfor a small time interval 𝑑𝑡 by 

  𝑑𝑁𝑒
𝐼 =

𝐼𝑒 𝑥+𝑑𝑥 −𝐼𝑒(𝑥)

𝑒
𝑑𝑡 =

1

𝑒

𝑑𝐼𝑒 𝑥 

𝑑𝑥
𝑑𝑥𝑑𝑡.     (B1.1). 

This change is due to the effect of the external ionization and the electron avalanche formation. 

The external ionizer creates the following number of electrons in the volume𝑆𝑑𝑥 

  𝑑𝑁𝑒
𝑒𝑥𝑡 = 𝑍𝑒𝑥𝑡 𝑆𝑑𝑥𝑑𝑡        (B1.2). 

whereas the electron avalanche produces the number of electrons found as 

  𝑑𝑁𝑒
𝑎 = 𝛼𝑁𝑒𝑑𝑙 = 𝑛𝑒𝑆𝑑𝑥𝑣𝑑𝑡 = 𝛼

𝐼𝑒(𝑥)

𝑒
𝑑𝑥𝑑𝑡     (B1.3). 

The balance equationfor the number of electrons is written as 

  𝑑𝑁𝑒
𝐼 = 𝑑𝑁𝑒

𝑒𝑥𝑡 + 𝑑𝑁𝑒
𝑎         (B1.4), 

whichresults in the following differential equation for the electron current 

  
𝑑𝐼𝑒(𝑥)

𝑑𝑥
= 𝑒𝑍𝑒𝑥𝑡 𝑆 + 𝛼𝐼𝑒(𝑥)       (B1.5). 

On substituting𝐼𝑒 𝑥 = 𝐶1𝑒
𝐴1𝑥 + 𝐴2,one derives 

  𝐴1 = 𝛼         (B1.6), 

  𝐴2 = −
𝑒𝑍𝑒𝑥𝑡 𝑆

𝛼
         (B1.7). 

B2.Given the fact that the ions flow in the direction opposite to the electron motion,the balance equationfor 

the number of ionsis written as 

  𝑑𝑁𝑖
𝐼 = 𝑑𝑁𝑖

𝑒𝑥𝑡 + 𝑑𝑁𝑖
𝑎         (B2.1), 

where 

  𝑑𝑁𝑖
𝐼 =

𝐼𝑖 𝑥 −𝐼𝑖(𝑥+𝑑𝑥 )

𝑒
𝑑𝑡 = −

1

𝑒

𝑑𝐼𝑖 𝑥 

𝑑𝑥
𝑑𝑥𝑑𝑡     (B2.2). 

  𝑑𝑁𝑖
𝑒𝑥𝑡 = 𝑍𝑒𝑥𝑡 𝑆𝑑𝑥𝑑𝑡        (B2.3). 

  𝑑𝑁𝑖
𝑎 = 𝛼

𝐼𝑒(𝑥)

𝑒
𝑑𝑥𝑑𝑡        (B2.4). 

Hence, the following differential equation for the ion current is obtained 

  −
𝑑𝐼𝑖(𝑥)

𝑑𝑥
= 𝑒𝑍𝑒𝑥𝑡 𝑆 + 𝛼𝐼𝑒(𝑥).       (B2.5) 

Onsubstituting the previouslyfound electron current together with the ion current,𝐼𝑖 𝑥 = 𝐶2 +
𝐵1𝑒

𝐵2𝑥 ,yields 

  𝐵1 = −𝐶1         (B2.6), 

  𝐵2 = 𝛼         (B2.7). 

B3.Sincetheionsstartstomovefrom the anode located at𝑥 = 𝐿, the following condition holds 

   𝐼𝑖 𝐿 = 0         (B3.1). 

B4.By definition of secondary electron emission coefficient the following condition should be imposed  

  𝐼𝑒 0 = 𝛾𝐼𝑖 0         (B4.1). 
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B5.Total current in each tube section is the sum of the electron and ion currents: 

𝐼 = 𝐼𝑒 + 𝐼𝑖 = 𝐶2 −
𝑒𝑍𝑒𝑥𝑡 𝑆

𝛼
       (B5.1). 

Aftersubstituting the boundary conditions (B3.1) and (B4.1): 

𝐶2 − 𝐶1𝑒
𝛼𝐿 = 0        (B5.2) 

and 

𝐶1 −
𝑒𝑍𝑒𝑥𝑡 𝑆

𝛼
= 𝛾(𝐶2 − 𝐶1)       (B5.3). 

Solving (B5.2) and (B5.3) one can obtain: 

𝐶2 =
𝑒𝑍𝑒𝑥𝑡 𝑆

𝛼
 

1

𝑒−𝛼𝐿 (1+𝛾)−𝛾
        (B5.4). 

So the total current: 

𝐼 =
𝑒𝑍𝑒𝑥𝑡 𝑆

𝛼
 

1

𝑒−𝛼𝐿 (1+𝛾)−𝛾
− 1        (B5.5). 

B6.When the discharge gap length is increased, the denominator in formula (B5.1) decreases. At that 

moment, when it turns zero, the electric current in the gas becomes self-sustaining and external ionizer can 

be turned off. Thus, 

𝐿𝑐𝑟 =
1

𝛼
ln  1 +

1

𝛾
         (B6.1). 

 


