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 Particles from the Sun
1
 (Total Marks: 10) 

 

Photons from the surface of the Sun and neutrinos from its core can tell us about solar temperatures and also 

confirm that the Sun shines because of nuclear reactions. 

Throughout this problem, take the mass of the Sun to be                , its radius,         
     , its luminosity (radiation energy emitted per unit time),               , and the Earth-Sun 

distance,               . 

Note: 
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A Radiation from the sun :  

A1 
Assume that the Sun radiates like a perfect blackbody. Use this fact to calculate the temperature,   , of the 

solar surface. 
0.3 

 

The spectrum of solar radiation can be approximated well by the Wien distribution law. Accordingly, the 

solar energy incident on any surface on the Earth per unit time per unit frequency interval,     , is given by 

      
  

 

  
 

   

  
                 

where   is the frequency and    is the area of the surface normal to the direction of the incident radiation. 

Now, consider a solar cell which consists of a thin disc of semiconducting material of area,  , placed 

perpendicular to the direction of the Sun’  rays. 

 

A2 
Using the Wien approximation, express the total radiated solar power,    , incident on the surface of the 

solar cell, in terms of  ,   ,   ,    and the fundamental constants  ,  ,   . 
0.3 

A3 
Express the number of photons,      , per unit time per unit frequency interval incident on the surface of 

the solar cell in terms of  ,   ,   ,   ,   and the fundamental constants  ,  ,   . 
0.2 

 

Th         du          r  l  f  h    l r   ll h     “b  d    ”  f    r y,   . We assume the following 

model.  Every photon of energy      excites an electron across the band gap. This electron contributes an 

energy,   , as the useful output energy, and any extra energy is dissipated as heat (not converted to useful 

energy). 

 

A4 
Define             where       . Express the useful output power of the cell,   u , in terms of   ,  , 

  ,   ,    and the fundamental constants  ,  ,   . 
1.0 

A5 Express the efficiency,  , of this solar cell in terms of    . 0.2 

A6 
Make a qualitative sketch of   versus   . The values at       and       should be clearly shown. What 

is the slope of       at       and      ? 
1.0 

A7 
Let    be the value of     for which   is maximum. Obtain the cubic equation that gives   . Estimate the 

value of    within an accuracy of       . Hence calculate      . 
1.0 

A8 
The band gap of pure silicon is           . Calculate the efficiency,    , of a silicon solar cell using this 

value. 
0.2 
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In the late nineteenth century, Kelvin and Helmholtz (KH) proposed a hypothesis to explain how the Sun 

shines. They postulated that starting as a very large cloud of matter of mass,   , and negligible density, the 

Sun has been shrinking continuously. The shining of the Sun would then be due to the release of 

gravitational potential energy through this slow contraction. 

A9 
Let us assume that the density of matter is uniform inside the Sun. Find the total gravitational potential 

energy,  , of the Sun at present, in terms of G,    and   . 
0.3 

A10 
Estimate the maximum possible time,     (in years), for which the Sun could have been shining, according 

to the KH hypothesis. Assume that the luminosity of the Sun has been constant throughout this period. 
0.5 

 
The     calculated above does not match the age of the solar system estimated from studies of meteorites. 

This shows that the energy source of the Sun cannot be purely gravitational. 
 

B Neutrinos from the Sun : 

In 1938, Hans Bethe proposed that nuclear fusion of hydrogen into helium in the core of the Sun is the source 

of its energy. The net nuclear reaction is: 

                 
   

Th  “ l   r     u r    ”,   , produced in this reaction may be taken to be massless. They escape  the Sun 

and their detection  on the  Earth  confirms  the  occurrence  of  nuclear  reactions  inside the  Sun. Energy carried 

away by the neutrinos can be neglected in this problem. 

 

B1 

Calculate the flux density,   , of the number of neutrinos arriving at the Earth, in units of          The 

energy released in the above reaction is               . Assume that the energy radiated by the Sun is 

entirely due to this reaction.  

0.6 

 

Travelling from the core of the Sun to the Earth, some of the electron neutrinos,   , are converted to other 

types of neutrinos,   . The efficiency of the detector for detecting    is 1/6 of its efficiency for detecting   . 

If there is no neutrino conversion, we expect to detect an average of    neutrinos in a year. However, due to 

the conversion, an average of    neutrinos (   and    combined) are actually detected per year. 

 

B2 In terms of     and   , calculate what fraction,   , of    is converted to   . 0.4 

 

In order to detect neutrinos, large detectors filled with water are constructed. Although the interactions of 

neutrinos with matter are very rare, occasionally they knock out electrons from water molecules in the 

detector. These energetic electrons move through water at high speeds, emitting electromagnetic radiation 

in the process. As long as the speed of such an electron is greater than the speed of light in water (refractive 

index,  ), this radiation, called Cherenkov radiation, is emitted in the shape of a cone. 

 

B3 

Assume that an electron knocked out by a neutrino loses energy at a constant rate of   per unit time, while it 

travels through water. If this electron emits Cherenkov radiation for a time,   , determine the energy 

imparted to this electron (     r  d  by the neutrino, in terms of  ,   , n,    and  . (Assume the electron to 

be at rest before its interaction with the neutrino.) 

2.0 

 

The fusion of H into He inside the Sun takes place in several steps. Nucleus of   
 

 (rest mass,    ) is 

produced in one of these intermediate steps. Subsequently, it can absorb an electron, producing 

a    
 

nucleus (rest mass,     <    ) and emitting a   . The corresponding nuclear reaction is: 

               
   

 

 

When a Be nucleus                      is at rest and absorbs an electron also at rest, the emitted 

neutrino has energy                . However, the    nuclei are in random thermal motion due to the 

temperature    at the core of the Sun, and act as moving neutrino sources. As a result, the energy of emitted 

neutrinos fluctuates with a root mean square (rms) value      . 

 

B4 
If      =           , calculate the rms speed of the Be nuclei,    , and hence estimate   . (Hint:       

depends on the rms value of the component of velocity along the line of sight). 
2.0 
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 The Extremum Principle
1
 (Total Marks: 10) 

A The Extremum Principle in Mechanics 

Consider a horizontal frictionless     plane shown in Fig. 1. It is 

divided into two regions, I and II, by a line AB satisfying the 

equation     . The potential energy of a point particle of mass   in 

region I is     while it is      in region II. The particle is sent 

from the origin O with speed    along a line making an angle    with 

the x-axis. It reaches point P in region II traveling with speed    along a 

line that makes an angle    with the x-axis. Ignore gravity and 

relativistic effects in this entire task T-2 (all parts). 

 

A1 Obtain an expression for    in terms of  ,    and   . 0.2 

A2 Express    in terms of   ,    and    . 0.3 

 

We define a quantity called action    ∫      , where    is the infinitesimal length along the trajectory 

of a particle of mass   moving with speed     . The integral is taken over the path. As an example, for a 

particle moving with constant speed   on a circular path of radius  , the action   for one revolution will be 

     . For a particle with constant energy  , it can be shown that of all the possible trajectories between 

two fixed points, the actual trajectory is the one on which   defined above is an extremum (minimum or 

maximum). Historically this is known as the Principle of Least Action (PLA). 

 

A3 

PLA implies that the trajectory of a particle moving between two fixed points in a region of constant 

potential will be a straight line. Let the two fixed points   and   in Fig. 1 have coordinates       and 

        respectively and the boundary point where the particle transits from region I to region II have 

coordinates         Note that    is fixed and the action depends on the coordinate   only.  State the 

expression for the action     . Use PLA to obtain the relationship between       and these coordinates. 

1.0 

B The Extremum Principle in Optics 

A light ray travels from medium I to medium II with refractive indices 

   and    respectively. The two media are separated by a line parallel to 

the x-axis. The light ray makes an angle    with the y-axis in medium I 

and    in medium II (see Fig. 2). To obtain the trajectory of the ray, we 

make use of another extremum (minimum or maximum) principle known 

as Fermat’s principle of least time.  

 

B1 

The principle states that between two fixed points, a light ray moves along a path such that time taken 

between the two points is an extremum. Derive the relation between        and        on the basis of 

Fermat’s principle. 

0.5 

 

Shown in Fig. 3 is a schematic sketch of the path of a laser beam incident 

horizontally on a solution of sugar in which the concentration of sugar 

decreases with height. As a consequence, the refractive index of the 

solution also decreases with height. 
 

 

B2 
Assume that the refractive index      depends only on  . Use the equation obtained in B1 to obtain the 

expression for the slope       of the beam’s path in terms of refractive index    at     and     . 
1.5 

B3 

The laser beam is directed horizontally from the origin       into the sugar solution at a height    from the 

bottom of the tank as shown in figure 3. Take            where    and   are positive constants. 

Obtain an expression for   in terms of   and related quantities for the actual trajectory of the laser beam. 

1.2 

                                                 
1
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Figure 2 

Figure 1 

Figure 3: Tank of Sugar Solution 

  

𝜃  

𝑦 

𝑥  𝑥 

× 

I II A 

𝛼 

B 

𝜃  
  

𝑉    

𝑉  𝑉  

 𝑥   𝑦   

      

𝑥 

𝑦 

  

𝜃  

𝑦 

𝑥  𝑥 

× 

I II A 

𝛼 

B 

𝜃  
  

𝑉    

𝑉  𝑉  

   𝑥  𝑦   
𝑖  

𝑖  𝑛  

𝑛  

𝛼 

𝑦 

𝑥   

I 

II 



 

 
Page 2 of 2 

T-2 Q 

You may use: ∫                      constant,  where           ⁄    or 

    ∫
  

√    
   (  √    )            

B4 
Obtain the value of   , the point where the beam meets the bottom of the tank. Take         cm, 

       ,         cm   (1 cm = 10
-2 

m). 
0.8 

 

C The Extremum Principle and the Wave Nature of Matter 
We now explore the connection between the PLA and the wave nature of a moving particle. For this we 

assume that a particle moving from   to   can take all possible trajectories and we will seek a trajectory 

that depends on the constructive interference of de Broglie waves. 

 

C1 
As the particle moves along its trajectory by an infinitesimal distance   , relate the change    in the phase 

of its de Broglie wave to the change    in the action and the Planck constant. 
0.6 

C2 

Recall the problem from part A where the particle traverses from 

  to   (see Fig. 4). Let an opaque partition be placed at the 

boundary AB between the two regions. There is a small opening 

CD of width   in AB such that            and     . 

 

Consider two extreme paths  C  and  D  such that  C  lies on 

the classical trajectory discussed in part A. Obtain the phase 

difference      between the two paths to first order. 

1.2 

D Matter Wave Interference 

Consider an electron gun at   which directs a collimated beam of 

electrons to a narrow slit at   in the opaque partition A B  at 

       such that     is a straight line.   is a point on the screen 

at       (see Fig. 5). The speed in I is          ×     m s   

and           . The potential in II is such that speed    
      ×     m s  . The distance       is           

(           ). Ignore electron-electron interaction. 

 

D1 If the electrons at   have been accelerated from rest, calculate the accelerating potential   . 0.3 

D2 

Another identical slit   is made in the partition A B  at a distance of        nm ( nm      m) below slit 

  (Fig. 5). If the phase difference between de Broglie waves arriving at P through the slits F and G is    , 

calculate  . 

0.8 

D3 
What is the smallest distance    from P at which null (zero) electron detection maybe expected on the 

screen? [Note: you may find the approximation                       useful] 
1.2 

D4 
The beam has a square cross section of      ×       and the setup is 2 m long. What should be the 

minimum flux density Imin (number of electrons per unit normal area per unit time) if, on an average, there 

is at least one electron in the setup at a given time? 

0.4 

 

Figure 4 

Figure 5 
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 The Design of a Nuclear Reactor
1
 (Total Marks: 10) 

 

 

Uranium occurs in nature as UO2 with only 0.720% of the uranium atoms being 
235

U. Neutron induced 

fission occurs readily in 
235

U with the emission of 2-3 fission neutrons having high kinetic energy. This 

fission probability will increase if the neutrons inducing fission have low kinetic energy. So by reducing the 

kinetic energy of the fission neutrons, one can induce a chain of fissions in other 
235

U nuclei. This forms the 

basis of the power generating nuclear reactor (NR). 

A typical NR consists of a cylindrical tank of height H and radius R filled with a material called moderator. 

Cylindrical tubes, called fuel channels, each containing a cluster of cylindrical fuel pins of natural UO2 in 

solid form of height H, are kept axially in a square array. Fission neutrons, coming outward from a fuel 

channel, collide with the moderator, losing energy and reach the surrounding fuel channels with low enough 

energy to cause fission (Figs I-III). Heat generated from fission in the pin is transmitted to a coolant fluid 

flowing along its length. In the current problem we shall study some of the physics behind the (A) Fuel Pin, 

(B) Moderator and (C) NR of cylindrical geometry. 

 

 

 

A Fuel Pin 

Data 

for UO2 

1. Molecular weight Mw = 0.270 kg mol
-1

 2. Density ρ = 1.060×10
4
 kg m

-3
 

3. Melting point Tm = 3.138×10
3
 K 4. Thermal conductivity λ = 3.280 W m

-1 
K

-1
 

 

 

A1 

Consider the following fission reaction of a stationary 
235

U after it absorbs a neutron of negligible kinetic 

energy. 
235

U + 
1
n    →     

94
Zr + 

140
Ce + 2 

1
n +    

Estimate    (in MeV) the total fission energy released. The nuclear masses are: m(
235

U) = 235.044 u; 

m(
94

Zr) = 93.9063 u; m(
140

Ce) = 139.905 u; m(
1
n) = 1.00867  u and 1 u = 931.502 MeV c

-2
. Ignore charge 

imbalance. 

0.8 

A2 Estimate N the number of 
235

U atoms per unit volume in natural UO2. 0.5 

A3 

Assume that the neutron flux density, φ = 2.000×10
18

 m
-2

 s
-1

 on the fuel is uniform. The fission cross-

section (effective area of the target nucleus) of a 
235

U nucleus is σf  = 5.400×10
-26

 m
2
.   If 80.00% of the 

fission energy is available as heat, estimate Q (in W m
-3

), the rate of heat production in the pin per unit 

volume. 1MeV = 1.602×10
-13

 J 

1.2 

A4 

The steady-state temperature difference between the center (Tc) and the surface (Ts) of the pin can be 

expressed as Tc−Ts = k F(Q,a,λ), where k = 1 ∕ 4 is a dimensionless constant and a is the radius of the pin. 

Obtain F(Q,a,λ) by dimensional analysis. Note that λ is the thermal conductivity of UO2. 
0.5 

                                                 
1
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principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and 
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Schematic sketch of the 

Nuclear Reactor (NR) 

Fig-I: Enlarged view of a fuel 

channel (1-Fuel Pins) 

Fig-II: A view of the NR 

(2-Fuel Channels) 

Fig-III: Top view of NR 

(3-Square Arrangement of 

Fuel Channels and 4-Typical 

Neutron Paths).  

Only components relevant to 

the problem are shown (e.g. 

control rods and coolant are 

not shown). 

Fig-I Fig-II Fig-III 
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A5 
The desired temperature of the coolant is 5.770×10

2
 K. Estimate the upper limit au on the radius a of the 

pin. 
1.0 

 

B The Moderator 

Consider the two dimensional elastic collision between a neutron of mass 1 u and a moderator atom of mass 

A u. Before collision all the moderator atoms are considered at rest in the laboratory frame (LF). Let   ⃗⃗⃗⃗  and 

  ⃗⃗⃗⃗  be the velocities of the neutron before and after collision respectively in the LF. Let   ⃗⃗⃗⃗  ⃗ be the velocity 

of the center of mass (CM) frame relative to LF and θ be the neutron scattering angle in the CM frame.  All 

the particles involved in collisions are moving at nonrelativistic speeds. 

 

B1 

The collision in LF is shown schematically, where θL is the scattering angle (Fig-IV). Sketch the collision 

schematically in CM frame. Label the particle velocities for 1, 2 and 3 in terms of   ⃗⃗⃗⃗ ,   ⃗⃗⃗⃗  and   ⃗⃗⃗⃗  ⃗. Indicate 

the scattering angle θ. 

 

1.0 

B2 
Obtain v and V, the speeds of the neutron and moderator atom in the CM frame after collision, in terms of A 

and   . 
1.0 

B3 
Derive an expression for G(α, θ) = Ea ∕ Eb , where Eb and Ea are the kinetic energies of the neutron, in the 

LF, before and after the collision respectively and                     . 
1.0 

B4 
Assume that the above expression holds for D2O molecule. Calculate the maximum possible fractional 

energy loss       
     

  
 of the neutron for the D2O (20 u) moderator. 

0.5 

 

C 

 

The Nuclear Reactor 

To operate the NR at any constant neutron flux ψ (steady state), the leakage of neutrons has to be 

compensated by an excess production of neutrons in the reactor.  For a reactor in cylindrical geometry the 

leakage rate is k1 [(2.405 ∕ R)
2
 + (π ∕ H)

2
] ψ and the excess production rate is k2 ψ. The constants k1 and k2 

depend on the material properties of the NR. 

 

C1 
Consider a NR with k1 = 1.021×10

-2
 m and k2 = 8.787×10

-3
 m

-1
. Noting that for a fixed volume the leakage 

rate is to be minimized for efficient fuel utilization, obtain the dimensions of the NR in the steady state. 
1.5 

C2 

The fuel channels are in a square arrangement (Fig-III) with the nearest neighbour distance 0.286 m. The 

effective radius of a fuel channel (if it were solid) is 3.617×10
-2

 m. Estimate the number of fuel channels Fn 

in the reactor and the mass M of UO2 required to operate the NR in steady state. 
1.0 

 

Collision in the Laboratory Frame 

1-Neutron before collision  

2-Neutron after collision 

3-Moderator Atom before collision 

4-Moderator Atom after collision 

 
1

3

Fig-IV 

2

4

  ⃗⃗⃗⃗  

  ⃗⃗⃗⃗  θL 


