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Dark Matter

A. Cluster of Galaxies

T1

Question A.1

o Answer

Potential energy for a system of a spherical object with mass

4
M (r)=—xr’p and a test particle with mass dm at a distance r is given by

M(r)

dU =-G- dm

7

0.2 pts

Thus for a sphere of radius R

& M(r)
J = — E
U , G

3
i ’047zr2pdr _16 Gﬁ2p2JR1”4dr
r 3 0

dm:—j:c; .

¥

:_lgGﬁ,?szS
15

0.6 pts

Then using the total mass of the system

4
Mzgm’@p

we have

0.2 pts

Total | 10pts
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Question A.2

Using the Doppler Effect,

fi=fmer £,0-8)

i 0 1'1“,8 J0 ’
whereﬂ = v/c and v << ¢ . Thus the i-th galaxy moving away (radial) speed
is
f‘ B fo -
V. =--—c
£, 0.2 pts

Alternative without approximation:

All the galaxies in the galaxy cluster will be moving away together due to the
cosmological expansion. Thus the average moving away speed of the N
galaxies in the cluster is

SNy
=SR-3 L),

Alternative without approximation:

B

IS
=\ Ji Jo o\

=

0.3 pts
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CDOTADON AN CULTE,

Question A.3

The galaxy moving away speed V., in part A. 2 is on!y one component of the

three component of the galaxy velocity. Thus the average square speed of each
galaxy with respect to the center of the cluster is

IG5 2 13 2 2 2
W;(V’_VL) :W;(V;1_V\c) +(Vw_VVL) +(V;14Kc) 0.5 pts

Due to isotropic assumption

N

NG BEES WA}

1

And thus the root mean square of the galaxy speed with respect to the cluster
center is

~\/ Z(V,,— —«\/WZ(V S, 4V = \/—%(ZV}—
o]
Yo (N;fo N; 0.7 pts

LB 1S L5 ) b,
- [Nz(f zmmj [{NZJ?} N;ﬁﬂ‘oJ

\’\

i=1 i=1

foN\/( Zf) (Zf)

Alternative without approximation:
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(1“’1}2 B A T
Lgl) il 1
N*Z f; N LT fh

N m 0.3 pts

Total | 1.5 pts
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Question A.4

Aﬁswer

The time average of a’l"/df vanishes
<dr> 0
dt
Now 0.6 pts
ar _d dr;
= —-l + ).
g dr Z Z b

:ZE-I;+Z/7ZI,VI,-VI,:ZE'¢ +2K
1 i i

Where K is the total kinetic energy of the system. Since the gravitational force on
i-th particle comes from its interaction with other particles then

ZF r—z /’*ZF - ZF I—ZF ZF

i,j#i i<y > i<j i<j
o mm, —r) mm,
R R ¢ Yo
JiooMi ~ F —
i<j i<j ]’ - l ’,’ /" i<j ]

Alternative proof:
0.9 pts

ZF T = ZF]l 7”1—1:21 7’1+F31 T1+F41 ot +FNl 7+

i,j#i
Fip?y + Fay By 4 Epy By 4 o+ Fyg By +

| Fig s + Fog. T + Fyg.Ba + -4 Fys By +

Fin. Ty + Fon. Ny + Fo. Py + -+ Fynoq. Fya

Collecting terms and noting that ﬁij = —ﬁﬁ we have
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Fio.(Fy = 7)) + Fiz3. (3 — 7)) + Fig. (1, — 1) + -+ Fpg. (5 — 75)

+ F24. (?4, _772) + M + F34. (Fé} —‘7_’:3) + e = Z F:”.(

i<j
:_ZG mimj (fi_Fj
P W el

i<j il

i —7)

Thus we have

dl’

—=U+2K
dt
Jr 0.2 pts
And by taking its time average we obtain<7:U+2K> =0 and thus
t 13
1 1
<K> :f~<U> . Thereforey =—.
! 2 2
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Question A.5

o Anewer

Using Virial theorem, and since the dark matter has the same root mean square
speed as the galaxy, then we have

GM’*
R

13
2 rins 2 5

0.3 pts

From which we have

0.1 pts

And the dark matter mass is then

2
SRv!
_ rms
dm - N m g
3G

0.1 pts

Total

0.5pts
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B. Dark Matter in a Galaxy

Question B.1

. kAryzswér e g Ma‘riﬁs'

Answer B.1: The gravitational attraction for a particle at a distance r from
the center of the sphere comes only from particles inside a spherical
volume of radius r. For particle inside the sphere with massm_, assuming

the particle is orbiting the center of mass in a circular orbit, we have 0.3 pts

2
m'(rym, _ M

2
r ¥V

with m'(r) is the total mass inside a sphere of radius

4
m'(r) =—mr-mn
o]

Thus we have 0.2 pts
1/2
4
v(r)= (#———ﬂinm‘ ) r

While for particle outside the sphere, we have

3r

3\1/2 0.2 pts
(472Gnm R J
vr)y=| ————
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The sketch is given below

vir}
/N
/f \\
/ 0.1 pts
{/i \\
]/ T
f/; \\*
R r
Sketch of the rotation velocity vs distance from the center of galaxy
: ~ Total | 0.8 pts
Question B.2
 Answer Marks
The total mass can be inferred from
I77‘<Rg )l/)l_‘ nq.\ \;g
R’ R,
Thus 0.5 pts
' VgRg
my, =m'(R,) = =
 Toul | 05pts
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Question B.3

Answer e o | Marks

Base on the previous answer in B.1, if the mass of the galaxy comes only
from the visible stars, then the galaxy rotation curve should fall

proportional to l/\/; on the outside at a distance r> R, . But in the figure
of problem b) the curve remain constant after r > R, , we can infer from

1 2
G m'(rym, _ My ' 0.3 pts

2
r ¥

to make v(r) constant, then m'(r) should be proportional to r forr > R,

i.e.forr>R,, m'(r) = Ar with 4 is a constant.

While forr < R_, to obtain a linear plot proportional tor, then m'(r)

should be proportional tor*, i.e. m'(r) = Br’. 0.3 pts

Thus for r < Rg we have

m'(r) = jpl (rY4m" dr'= Br’
0

N 5 0.2 pts
dm'(r)y= p,(r)4m dr =3Br dr
) 3B
Thus total mass density p, (r) = —
v
Rg "B m Vz
i, = ff——émr'2 dr' = BR;orB: =2
o 4 R, GR,”
32 0.2 pts
Thus the dark matter mass density p(r) = —e nm,
47GR,’ '
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While for » > K, we have

tooN Ry ' 12 1 4 ] 12 1
m'(r) 7J‘o o(rYdm' dr +L P4 dr' = Ar

m'(r) =m, + L; p(r 4w dr' = Ar

[ PO dr = dr =M,

> A
p(r)dmr® =4, o0r p(r) = 2

5 -
r

0.2 pts

Now to find the constant A.

A 5
[ ~—=54m" dr'= A(r—=R,) = Ar - m,
R4 " °

2
Thus AR, = myand A4 = Yo
) G

We can also find A from the following

! 2 2
m'(r)m, Arm_ . my v
S =Gt =0 thusd=-2.

r r 7

Thus the dark matter mass density (which is also the total mass density

since nzOforrZRg.

P
Yo

AnGr?

p(r) = forr= R,

0.3 pts

“Total

: 1.Sipfs
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C. Interstellar Gas and Dark Matter

Question C.1

Answer e . 2o - Marks
Consider a very small volume of a disk with area A and thickness Ar, see Fig.1
¢P(r+a‘r}
bar
Plr)
;
0.3 pts
| alr) P
Figure 1. Hydrostatic equilibrium
In hydrostatic equilibrium we have
(P(r)—P(r+Ar))A—pg(r)AAr =0
AP Gm'(r)
— = _._p 5
Ar r
0.2 pts
di __5 sz(r) = —n(r)m, sz(r) .
dr F r
05pts
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Question C.2

Answer. = L e s M

Using the ideal gas law P = n kT where n = N/V where n is the number
density, we have
ﬁ: T dn(r)

dr dr

+ kn(r) izz =-n(r)m, ___Gm2 ()
dr r

Thus we have 0.5 pts

' (r) = kT | +° dn(r)+ r’dT(r)
n(r)y dr T(ry dr )

P

~ Total| 05pts.
Question C.3
If we have isothermal distribution, we have d7/dr =0 and
kT -2 d,
m'(r) = ——2 r._dn(r) 0.2 pts
Gm,\ n(r) dr
From information about interstellar gas number density, we have
1 dn(r) B 3r+p
n(r) dr r(r+f)
Thus we have 0.2 pts
k -
m'(r)= j‘T(,r —3} R
Gm , (r+f3)
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Mass density of the interstellar gas is

( ) CZ:’?Z])
ry=—r-——
P r(B+r)
Thus
i KL,y 3r+f 0.3 pts
I’}’l'(l’) - (pg (i"') + p:/m (}" ))472}"2 df": ¢
'([ Gmp (r+ /)
f om T )
/7’1'(}‘) :JA _—I—}— _+_10/‘7]” (}ﬂ')w4m‘y2 CZ}"': __O_}i 3} +ﬂ
o\ By ) Gm, (r+f)
ant N A, TN fZ a3
[—IZ—? + pz/)ll (f")\4727‘4 = - 70 o+ 61/‘5’5 ﬂ
F(IB+F) ) J (Jmp (1/—|—18)‘
) kT, 37+ orf+ [ am, 0.3 pts
Fy= L
pdm 47[(;”/1[7 (},‘+ﬂ)ZIﬂL [’(ﬁ—l—r)z
Total | 1.0 pts
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Earthquake, Volcano and Tsunami

A. Merapi Volcano Eruption

12

Question Answer Marks
Al Using Black’s Principle the equilibrium temperature can be obtained | 0.5 pts
mwcvw(Te - Tw) + mmcum(Te - Tm) =0
Thus,
_ mWCUWTW + mmCUme
¢ mWCUW + mmcvm
A.2 Forideal gas, p,v, = RT, , thus 0.3 pts
R mWCUWTW + mmCVme
Pe = —
¢ ve mW CUW + mmcvm
A3 The relative velocity u,,, can be expressed as 0.5 pts
Urey = K pOVEMY
where k is a dimensionless constant.
Using dimensional analysis, one can obtain that
LT ! = Ma+yL—a+3BT—2a
a+y=0 -
—a+38=1
—2a=-1
Therefore
= x p/2y1/2p-1/2
Uper = KD m
Total score | 1.3 pts
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0 2017

B. The Yogyakarta Earthquake

B.1

T2

From the given seismogram, fig. 2 0.3
. pts
x133 m/s \ /
s.of M
R
2.5¢ i £t
0 — § L\/
-2.5¢ VS
-5.0 ! E /)f‘ z |
=7:5F i/
. yan |
22:54:00 £ 22:54:05
22:54:045
One can see that the P-wave arrived at 22:54:045 or (4.5 —5.5)
seconds after the earthquake occurred at the hypocenter.
Since the horizontal distance from the épicénter to the seismic station | 0.1
in Gamping is 22.5 ki, and the depth of the hypocenter is 15 km, the pts
distance from the hypocenter to the station is
J22.5% +15% km =27.04 km
Therefore, the P-wave velocity is 0.1
27.04 Km : pts -
vp =—— = 5.75Km/s
P 47s > Km/

0.5
pts

Page 2 of 8



Solutions/
Marking Scheme

12

- - pts
SR 500° +15°  502.021
tdirec( = = =T s=86.9s
v, 12 5.753
As in the case of an optical wave, the Snell’s law is also applicable to | 0.4
the seismic wave. pts

Yogyakarta Denpasar
{Epicenter) 500 Km {ONP)

.
N\
b

---a;--

lllustration for the traveling seismic Wave

Reflected wave:

SC CR-
reflected =t

Vi ¢

50
SCcosp+CRcosgp =500=>cotg =759
45

Lflosied = — = 87.3s

Vv, sing

pts
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Velocity of P-wave on the mantle. The fas\test wave crossing the mantle

0.4

is that propagating along the upperpart of the mantle. From the figure pts
on refracted wave, we obtain that
ind 1 .
i =— sm9=i; cosf =
Vi Vi ¢!
15 15 30
cosf=—; x = km; x, = km
X, cosd ° cosd
x; =500 —(x, +x,)sin@ =500 -45tan &
The total travel time: 0.5
ts
x4y x45S00 45tang P
2 v, wycosé v, v,
tcos@ = 45u, +500u, cosd - 45uz' sin@ .- &
where u, =1/v, and u, =1/v, . Arranging the equation, we get
(500% +45% )u3 — 2t 500u, +1* —45% u, =0
whose solution is
50007 +43v,(4525500° )~ 23}
V? = 2 2 7_“ -
i vy —45°
0.3
-5 Station DNP
x107°m/s pts
8t
4+
0
4t
-8}
12t

22:55:05 22:55:15

From the seismogram, we know that the fastest wave arrived at
Denpasar station at 22:55:15, which is £ =75 s from the origin time of
the earthquake in Yogyakarta. Thus ..

v, =7.1 km/s L

1.2

pts

Page 40f8- -




Solutions/

12

Marking Scheme u., s

B.4

By using Snell’s law and defining p = sin@/ and u =1/v, we obtain 0.2
. ) ) pts
p=u(0)sing, =u(z)sin b, sinf =
u(z)
where u(z)=1/v(z) and 6, is the initial angle of the seismic wave | 0.5
direction. pts
dx .
— =sin
ds
de_dsds
dz dsdz
— f P d
1S o\
% (u _p )
0.7
dx o pts
: X
b i
dz| &
____________ :
y?

Illustration for the direction of wave

The distance X is equal to twice the distance from epicenter to the turning
point. The turning point is the point when 8=90°. Thus
1 _1=py

p=u(z,)=———; z
v, +az, ap

z
=1

p(v, +az) 2( 2 2 2 z)
X=2 dz =—\J1=p (v, +az) —y1-pv
vt V1P a1

pts

Page 5 of 8 -2




Solutions/

12

Marking Scheme . =

B.5

For the travel time, dt = ds_. £=u(z).

2

v(z) ds

Thus

dt _dtds u’
dz dsdz (> -p*)"

and therefore

7 ZI

1 1
T=2 —d =2 dz
o (W? = pH)? { (v +az) (1= p(vg +az)*)"?

1.0
pts

1.0
pts

B.6

The total travel time from the source to the Denpasar can be calculated
using previous relation

“T(p)= 2j—5—)-—d2

o(_u (2)-p )I/’

Which is valid for a continuou;s u(z). For a simplified stacked of

homogeneous layers (Figure F), the integral equation became a
summation

T(p)—zﬁ%
P\u, —p _

1~

0.6
pts

uiAz, o uziz, o uzAzs

1 1 1
wi-p»)z (Wi-p¥)z (ui-p?)2
2 x (0.1504)?> x 6 N 2 x (0.1435)2 x 9

T(p) =

1 1
(0.15042 — 0.1432)z  (0.14352 — 0.1432)2
L 2X (0.1431)2 x 15

1
(0.14312 — 0.1432)2
= 151.64 second

Note that the actual travel time from the epicenter to Denpasar is 75
seconds. By varying the parameters of velocity and depth up to suitable
value of observed travel time, physicist can know Earth structure.

0.4
pts

1.0
pts

Total score

5.7
pts
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C. Java Tsunami

12

C1 The center of mass of the raised ocean water with respect to the ocean | 0.5 | 0.5
surface is h/2. Thus pts | pts
h?pALg
!
where p is the ocean water density.

C.2 Considering a shallow ocean wave in Fig. 5, the whole water (from the | 0.7 | 1.2
surface until the ocean floor) can be considered to be moving due to the | pts | pts
wave motion. The potential energy is equal to the kinetic energy.

! AR?L ! dLAU?
ZPARLg = 2p
Where x = /1/2 and U is the horizontal speed of the water component.
The water component that was in the upper part hL% should be equal to
the one t_hatimoves horizqntally for ahalf of period of time _T/z, i.e. N
hLA/2 =dLUt/2. .
Thus we have B
B U hA
T d
Accordingly, 0.5
. \/ﬁ R
Thus
A
v=—=,/gd
T

C3 Using the argument that the wave energy density is proportional to its | 1.3 | 1.3
amplitude E = kA? with A is amplitude and k is a proportional constant | pts | pts
Because the energy flux is conserve, then
Eva = Eyvya for an area a where the wave flow though.

Then,
kAZ-\{gd = kAg‘\,ng
1
do\*
A=A (——)
°\d
(Therefore the tsunami wave will increase its amplitude and become
. nérrower as it approaches the beach).
=, Total score | 3.0
pts
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Total Score for Problem T2:

Section A : 1.3 points
Section B : 5.7 points
Section C: 3.0 points

Total : 10 points
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Cosmic Inflation

A. Expansion of Universe
Question A.1

For any test mass m on the boundary of the sphere,

13

0.2

Therefore, we have 4; = -

mR(t) = —GmM,/R?(t) (A.1.1)
where M, is mass portion inside the sphere
Multiplying equation (A.1.1) with R and integrating it gives 0.6
ffe@ =1 pe= Sy,

dt 2 R
where A is a integration constant
Taking M, = %nR3(t)p(t), and R = a R, 0.2

a\>  8nG 24 0.2
(‘) =3 p(t) + RZa?(0)
&G 0.1

"Question A.2

Answer -

-Page 1 of 10
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The 2" Friedmann equation can be obtained from the 1% law of 0.1
thermodynamics :
dE = —pdV + dQ.
For adiabatic processes dE + pdV = 0 and its time derivativeis E +p V = 0.1
0.
For the sphere V =V (3 d/a) 0.1
Its total energy is E = p(t)V (¢) c? 0.2
N U A 0.1

Therefore E = (p +3 Z) Ve
It yields 0.2

. pya

p+ 3 (,0 + C_2> a =0
Therefore, we have 4, = 3 0.1

Page 2 of 10
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13

Question A.3

Interpreting p(t)c? as total energy density, and substituting PO _ p(t) 0.1

c2

in to the 2" Friedmann equation yields:

a
p+3p(1+w)a=0

p < g 3w+ 0.2
(i) In case of radiation, photon as example, the energy is given by E, = 0.3
hv = hc/A then its energy density p, = % o« a~*sothat w, = g
2
(i) In case of nonrelativistic matter, its energy density nearly p,, = m;’/c [ 0.3

a3 since dominant energy comes from its rest energy myc?, so that w,,, =
0

(iii) For a constant energy density, let say €, = constant, €, « a® so that 0.3
Wp = —1.

Page 3 of 10
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Question A.4

(i) In case of k = 0, for radiation we have p,a* = constant. So by comparing
the parameters values with their present value, p,(t)a*(t) = p,oas,

() =" o ()"

1
[ada =§a2 +K = (% proag)z t.

13

0.2

Because a(t = 0) = 0,K = 0, then

1
1 - 1 1 1
a(t) = (2)2 (22 proad)’ t2 = (2H)z t 2.

1

where H, = (§Z—G ,0r0>E after taking ay = 1.

0.2

(ii) for non-relativistic matter domination, using p,,(£)a3(t) = ppmoa3, and
similar way we will get

2 1 2
3\3 /871G 3 2 3Hy\3 .2
a(®) = () (5% pmodt)” 5= (2)° 5.

1

where H, = (?_7_3{2 pmo)g.

0.4

(iii) for constant energy density,

Ina=Hyt+K'

1

Where K’ is integration constant and H, = (8—7:-;- pA)Z. Taking condition a, =

1,

In (aio) = Hy(t — t5)

a(t) s eHO(t_tO)

0.4
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Question A.5

13

‘ .

v

Condition for critical energy condition:

3H?

pc(t) = 817G

Friedmann equation can be written as

2

H?(t) = H*(HQ) — RZa2(0)

(a2 -1) = & (A5.1)

Question A.6

RS
2

Because ( )azH2 >0, then k=41 corresponds to O>1, k=-1

corresponds to Q < 1 and k = 0 correspondsto ) = 1

0.3

Page 5 of 10




Solutions/
Marking Scheme

13

B. Motivation To Introduce Inflation Phase and Its General Conditions
Question B.1

o

hat T 0.1

Equatlon (A.5.1) stWs t

Q-1) - RE L

2 52°
Ry a

In a universe dominated by non-relativistic matter or radiation, scale factor can 0.2

P
be written as a function of time as a = a, (;—t—) where p <1 (p = % for
0

- . 2 C
radiationand p = 3 for non-relativistic matter )

(Q—1) = k ¢20-P 0.2

Question B.2

For a period dominated by constant energy provides the solution a(t)
that @ = He''*

Page 6 of 10
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Question B.3

i

13

Hubble radius)

Question B.4

Inflation period can be generated by constant energy period, therefore it is a 0.2
phase where w = —1 so that p = wpc? = —pc? (negative pressure).
Differentiating Friedmann equation leads to 0.4
8nG kc?
a? =— pa® ——-
3 P4 TR
= ox 8nG .. . 8nG . .
28 = —~ (pa® + 2paa) = % (-3 (p + C%) aa + 2paa).
a_  4nG N 3p)
a_ 3 (p c?
So that because during inflation p = —pc?, it is equivalent with condition d > 0.1
0 (accelerated expansion)
As a result, d =d(a)/dt = d(Ha)/dt >0 or d(Ha) '/dt < 0 (shrinking | 0.2

Answe

. . . ~dam) . .
Inflation condition can be written as % < 0, with H = a/a as such

d(aH)™  aH+aH _

1
s =——1-¢g<0=€e<1
i (@ o 9<0=c
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C. Inflation Generated by Homogenously Distributed Matter

Question C.1

Differentiating equations (4) and employing equétion 4 We cén get | A 0.3
. _ 1 . ee a_V . _ 1 - .2
ZHH = 3M2; [¢¢ + (a¢>) ¢] - 3M2, [-3H ¢7]
. 1 ¢p?
f=_12
2 My,
12
Therefore € = = (f > 0.1
2 M3 H

The inflation can occur when the potential energy dominates the particle’s 0.2
energy (¢? « V) such that H? ~ V/(3M2).

Slow-roll approximation: 3H¢ ~ —V’ 0.1
Implies 0.3
‘ ~ MTSI(VV)Z (C.1.2)
we also have 0.4
3Hp +3Hp = —V"¢
6=t
Therefore
my ~ M5 (C.1.2)
dN = H dt = (5) dg ~ —M—};(V/V’) do (C13)| o3
@ = wr V)

Page 8 of 10
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NOBTTHY OF
EDUCATION AND CULTURE

D. Inflation with A Simple Potential

Question D.1

i

Question D.2

From equations (C.1.1), (C.1.2) and (C.1.3) we can obtain 0.2

2
o1 1
N=—|— —+
Mpl n B

where £ is a integration constant. As N = 0 at ¢4 then § = g.

2

1 n
N=-|2 +
My 2n 4
M,1? 2(n—1) 0.2
= -1 p]:
_n? [Mpl]z . on 0.2
=201l “nZan
so that 0.1
16n
r=16£—n_4N
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EDUCATION AN CULTURE

13

(—0.27) and for n = —5 leads a contradiction 0 < (—0.2).

2(n + 2) 0.1
ng=1+2n,—-6e=1——--—=-
To obtain the observational constraint ng = 0.968 we need n = —5.93 which 0.1
is inconsistent with the condition r < 0.12. There is no a closest integer n that
can obtains r < 0.12. As example, for n = —6 leads a contradiction 0 <

Page 10 of 10




