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Zero-length springs and slinky coils
A zero effective length spring (ZLS) is a spring for which the force is proportional to the spring's length,
𝐹 = 𝑘𝐿 for 𝐿 > 𝐿0 where 𝐿0 is the minimal length of the spring as well as its unstretched length. Figure
1 shows the relation between the force 𝐹 and the spring length 𝐿 for a ZLS, where the slope of the line
is the spring constant 𝑘.

Figure 1: the relation between the force 𝐹 and the spring length 𝐿

A ZLS is useful in seismography and allows very accurate measurement of changes in the gravitational
acceleration 𝑔. Here, we shall consider a homogenous ZLS, whose weight 𝑀𝑔 exceeds 𝑘𝐿0. We define a
corresponding dimensionless ratio, 𝛼 = 𝑘𝐿0/𝑀𝑔 < 1 to characterize the relative softness of the spring.
The toy known as “slinky” may be (but not necessarily) such a ZLS.

Part A: Statics (3.0 points)

A.1 Consider a segment of length Δℓ of the unstretched ZLS spring which is then
stretched by a force 𝐹 , under weightless conditions. What is the length Δ𝑦 of
this segment as a function of 𝐹, Δℓ and the parameters of the spring?

0.5pt

A.2 For a segment of length Δℓ, calculate the work Δ𝑊 required to stretch it from
its original length Δℓ to a length Δ𝑦.

0.5pt

Throughout this question, wewill denote a point on the spring by its distance 0 ≤ ℓ ≤ 𝐿0 from the bottom
of the spring when it is unstretched. In particular, for every point on the spring, ℓ remains unchanged
as the spring stretches.

A.3 Suppose that we hang the spring by its top end, so that it stretches under its
own weight. What is the total length 𝐻 of the suspended spring in equilibrium?
Express your answers in terms of 𝐿0 and 𝛼.

2.0pt

Part B: Dynamics (5.5 points)
Experiments show that when the spring is hung at rest and then released, it gradually contracts from
the top, while the lower part remains stationary (see Figure 2). As time advances, the contracting part
moves as a solid chunk and accumulates additional turns of the spring, while the stationary part becomes
shorter. Every point on the spring begins tomove only when themoving part reaches it. The bottom end
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of the spring starts moving only when the spring is fully collapsed and reaches its unstretched length
𝐿0. After that, the contracted spring continues falling straight downwards, without tumbling, as a rigid
body under the influence of gravity.

Figure 2: Left: a sequence of pictures taken during the free fall of slinky. Right: the moving
part I and the stationary part II during the free fall of the spring.

In the remaining parts of the question, you are asked to base your solution on this describedmodel. You
may neglect air resistance, but you are not allowed to neglect 𝐿0.

B.1 Calculate the time 𝑡𝑐 it takes from the moment the spring is released, until it
fully collapses back to its minimal length 𝐿0. Express your answer in terms of
𝐿0, 𝑔 and 𝛼.
Compute the numerical value of 𝑡𝑐 for a spring with 𝑘 = 1.02 N/m, 𝐿0 = 0.055 m
and 𝑀 = 0.201 kg, while taking 𝑔 to be 9.80 m/s2.

2.5pt
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B.2 In this task ℓ is used to denote the coordinate of the boundary between parts I
(in figure 2, the moving part) and II (the stationary part). At a certain moment,
while a stationary part still exists its mass is 𝑚(ℓ) = ℓ

𝐿0
𝑀 , and the moving part

moves with uniform instantaneous velocity 𝑣𝐼(ℓ). Show that at this moment
(while there exists a stationary part) the velocity of the moving part is 𝑣𝐼(ℓ) =√

𝐴ℓ + 𝐵. Express the constants 𝐴 and 𝐵 in terms of 𝐿0, 𝑔 and 𝛼.

2.5pt

B.3 Based on B.2, find the minimum speed 𝑣min of the moving part of the spring in
the course of its motion, after its release and before it hits the ground. Express
your answer in terms of 𝐿0, 𝛼, 𝐴 and 𝐵.

0.5pt

Part C: Energetics (1.5 points)

C.1 Calculate the amount of mechanical energy 𝑄 that was lost by generating heat,
from the moment the spring is released until just before the spring hits the
ground. Express your answer in terms of 𝐿0, 𝑀 , 𝑔 and 𝛼.

1.5pt
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The Physics of a Microwave Oven
This question discusses the generation of microwave radiation in a microwave oven, and its use to heat
up food. The microwave radiation is generated in a device called “magnetron”. Part A concerns the
operation of the magnetron, while part B deals with the absorption of microwave radiation in food.

Figure 1

Part A: The structure and operation of a magnetron (6.6 points)
A magnetron is a device for the generation of microwave radiation, either in pulses (for radar applica-
tions), or continuously (e.g., in a microwave oven). The magnetron has a mode of self-amplifying oscil-
lations. Supplying the magnetron with static (non-alternating) voltage quickly excites this mode. The
microwave radiation thus created is transmitted out of the magnetron.

A typical microwave oven magnetron consists of a solid copper cylindrical cathode (with radius 𝑎) and a
surrounding anode (with radius 𝑏). The latter has the shape of a thick cylindrical shell into which cylindri-
cal cavities are drilled. These cavities are known as “resonators”. One of the resonators is coupled to an
antenna which will transmit the microwave energy out; we will ignore the antenna in the following. All
internal spaces are in vacuum. We will consider a typical magnetron with eight resonators, as depicted
in Figure 1(a). The three-dimensional structure of a single resonator is shown in Figure 1(b). As indi-
cated there, each of the eight cavities behaves as an inductor-capacitor (LC) resonator, with operating
frequency 𝑓 = 2.45 GHz.
A static uniform magnetic field is applied along the magnetron's longitudinal axis, pointing out of the
page in Figure 1(a). In addition, a constant voltage is applied between the anode (positive potential) and
the cathode (negative potential). Electrons emitted from the cathode reach the anode and charge it,
such that they excite an oscillation mode in which the sign of the charge is opposite between every two



Theory

Q2-2
English (Official)

adjacent resonators. The oscillation of the cavities amplify these oscillations.

The process described above creates an alternating electric field with the aforementioned frequency
𝑓 = 2.45 GHz (blue lines in Figure 1(a); the static field is not plotted) in the space between the cathode
and the anode, in addition to the static field caused by the applied constant voltage. In the steady state,
the typical amplitude of the alternating electric field between the anode and the cathode is approximately
1
3 of the static electric field there. The electron motion in the space between the cathode and the anode
is affected by both the static and the alternating parts of the field. This causes electrons that reach the
anode to transfer about 80% of the energy they acquire from the static field into the alternating field.
A minority of the ejected electrons returns to the cathode and releases additional electrons, further
amplifying the alternating field.

Each resonator can be thought of as a capacitor and an inductor, see Figure 1(b). The capacitancemainly
arises from the planar parts of the resonator surface, while the inductance stems from the cylindrical
part. Assume that the current in the resonator flows uniformly very close to the surface of its cylindrical
cavity, and that the strength of the magnetic field generated by this current is 0.6 times that of an ideal
infinite solenoid. The various lengths defining the resonator geometry are given in Figure 1(b). The
vacuum permittivity and permeability are 𝜀0 = 8.85 ⋅ 10−12 F

m and 𝜇0 = 4𝜋 ⋅ 10−7 H
m , respectively.

A.1 Use the above data to estimate the frequency 𝑓est of a single resonator. (Your
result may differ from the actual value, 𝑓 = 2.45 GHz. Use the actual value in
the remainder of the question.)

0.4pt

Task A.2 below does not deal with the magnetron itself, but helps to introduce some of the relevant
physics. Consider an electronmoving in free space under the influence of a uniform electric field directed
along the negative 𝑦 axis, ⃗⃗⃗ ⃗⃗ ⃗𝐸 = −𝐸0 ̂𝑦, and a uniform magnetic field directed along the positive 𝑧 axis,
⃗⃗⃗ ⃗⃗𝐵 = 𝐵0 ̂𝑧 (𝐸0 and 𝐵0 are positive; ̂𝑥, ̂𝑦, ̂𝑧 are unit vectors oriented in the conventional manner). Let us
denote the electron velocity at time 𝑡 by 𝑢⃗(𝑡). The drift velocity ⃗⃗ ⃗⃗𝑢𝐷 of the electron is defined as its average
velocity. We denote by 𝑚 and −𝑒 the mass and charge of the electron, respectively.

A.2 In each of the following two cases, find ⃗⃗ ⃗⃗𝑢𝐷. In addition, draw in the Answer
Sheet the electron's trajectory (in the lab frame) during the time interval 0 < 𝑡 <
4𝜋𝑚
𝑒𝐵0

if:
1. at 𝑡 = 0 the electron velocity is ⃗⃗ ⃗⃗𝑢(0) = (3𝐸0/𝐵0) ̂𝑥,
2. at 𝑡 = 0 the electron velocity is ⃗⃗ ⃗⃗𝑢(0) = −(3𝐸0/𝐵0) ̂𝑥.

1.5pt

We now resume our discussion of the magnetron. The distance between the cathode and the anode is
15mm. Assume that, due to the aforementioned energy loss to the alternating fields, themaximal kinetic
energy of each electron does not exceed 𝐾max = 800 eV. The static magnetic field strength is 𝐵0 = 0.3 T.
The electron mass and charge are 𝑚 = 9.1 ⋅ 10−31 kg and −𝑒 = −1.6 ⋅ 10−19 C, respectively.

A.3 Numerically estimate the maximal radius 𝑟 of the electron motion trajectory in
the reference frame in which this motion is approximately circular, considering
this reference frame as approximately inertial.

0.4pt
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Figure 2

A.4 Figure 2 depicts the alternating electric field lines between the anode and the
cathode at a given moment in time (the static field is not plotted). Indicate in
the Answer Sheet which of the electrons positioned at A,B,C,D and E will drift
towards the anode, which will drift towards the cathode and which will drift at
a direction perpendicular to the radius at that moment.

1.2pt

Figure 3

Figure 3 depicts the alternating electric field lines between the anode and the cathode (the static field is
not plotted) at a given moment in time. The positions of six electrons at that moment are denoted by A,
B, C, D, E and F. All electrons are at the same distance from the cathode.
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A.5 Consider the situation shown in Figure 3. For each of the six electron pairs AB,
AC, BC, DE, DF, EF, indicate in the Answer Sheet whether their drift will cause
the angle between their position vectors (measured from the cathode’s center
O) to increase or decrease at that moment.

1.2pt

Figure 4

The pattern you have discovered in Task A.5 acts as a focusing mechanism, concentrating the electrons
in the space between the cathode and anode into spokes. Figure 4 depicts one such spoke, denoted by
S.

A.6 Depict in the Answer Sheet the other spokes at thatmoment. Indicate by arrows
their direction of rotation, and calculate their average angular velocity 𝜔𝑠.

0.8pt

Make the approximation that the total electric field half-way between the cathode and the anode is equal
to its average static value along a radial line from the cathode to the anode, and that the spokes are
approximately radial in that region. The cathode and anode radii (𝑎 and 𝑏, respectively) are defined in
Figure 4.

A.7 Find an approximate expression for the static voltage 𝑉0 required for operating
the magnetron in the manner described. (The expression you will find gives
an approximation for the minimal value required for the magnetron operation;
the optimal voltage is somewhat higher.)

1.1pt

Part B: The interaction of microwave radiation with water molecules (3.4 points)
This part deals with the usage of microwave radiation (radiated by the magnetron antenna into the food
chamber) for cooking, that is, heating up a lossy dielectric material such as water, either pure or salty
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(which is our model for, say, soup).

An electric dipole is a configuration of two equal and opposite electric charges 𝑞 and −𝑞 a small distance
𝑑 apart. The electric dipole vector points from the negative to the positive charge, and its magnitude is
𝑝 = 𝑞𝑑.
A time-dependent electric field ⃗⃗⃗ ⃗⃗ ⃗𝐸(𝑡) = 𝐸(𝑡) ̂𝑥 is applied on a single dipole of moment ⃗𝑝(𝑡) with constant
magnitude 𝑝0 = | ⃗𝑝(𝑡)|. The angle between the dipole and the electric field is 𝜃(𝑡).

B.1 Write expressions for both themagnitude of the torque 𝜏(𝑡) applied by the elec-
tric field on the dipole and the power 𝐻𝑖(𝑡) delivered by the field to the dipole,
in terms of 𝑝0, 𝐸(𝑡), 𝜃(𝑡) and their derivatives.

0.5pt

Water molecules are polar, hence can be treated as electric dipoles. Due to the strong hydrogen bonds
between water molecules in liquid water, one cannot treat them as independent dipoles. Rather, one
should refer to the polarization vector ⃗⃗⃗ ⃗⃗ ⃗𝑃 (𝑡), which is the dipole moment density (average dipole moment
per unit volume of an ensemble of water molecules). The polarization ⃗⃗⃗ ⃗⃗ ⃗𝑃 (𝑡) is parallel to the local applied
alternating electric field (of the microwave radiation), ⃗⃗⃗ ⃗⃗ ⃗𝐸(𝑡), and oscillates in time with an amplitude that
is proportional to the amplitude of the local alternating electric field, but with a phase lag 𝛿.
The local alternating electric field at a given location inside thewater is ⃗⃗⃗ ⃗⃗ ⃗𝐸(𝑡) = 𝐸0 sin(𝜔𝑡) ̂𝑥, where 𝜔 = 2𝜋𝑓 ,
giving rise to polarization ⃗⃗⃗ ⃗⃗ ⃗𝑃 (𝑡) = 𝛽𝜀0𝐸0 sin(𝜔𝑡 − 𝛿) ̂𝑥, where the dimensionless constant 𝛽 is a property of
water.

B.2 Find an expression for the time-averaged power ⟨𝐻(𝑡)⟩ per unit volume ab-
sorbed by the water.
The time-average for a time dependent periodic variable 𝑓(𝑡) over its period 𝑇
is defined as:

⟨𝑓(𝑡)⟩ = 1
𝑇

𝑡0+𝑇

∫
𝑡0

𝑓(𝑡)d𝑡. (1)

0.5pt

Let us now consider the propagation of the radiation through the water. The relative dielectric constant
of water (at the electromagnetic field frequency) is 𝜀𝑟, and the corresponding index of refraction of water
is 𝑛 = √𝜀𝑟. The momentary energy density of the electric field is given by 1

2 𝜀𝑟𝜀0𝐸2. The time-averaged
energy density of the electric and magnetic fields are equal.

B.3 Let us denote the time-averaged radiation energy flux density by 𝐼(𝑧) (average
radiation power flow per unit area). Here 𝑧 is the depth of penetration into
the water, and the radiation propagates in the 𝑧 direction. Find an expression
for the dependence of the flux density 𝐼(𝑧) on 𝑧. The flux density at the water
surface, 𝐼(0), may appear in your result.

1.1pt

The phase lag 𝛿 is the result of the interaction between the water molecules. It depends on the dimen-
sionless dielectric loss coefficient 𝜀ℓ and the relative dielectric constant 𝜀𝑟 (both of which depend on
the radiation angular frequency 𝜔 and the temperature) via the relation tan 𝛿 = 𝜀ℓ/𝜀𝑟. When 𝛿 is small
enough, the electric field at penetration depth 𝑧 into the water is given by:

⃗⃗⃗ ⃗⃗ ⃗𝐸(𝑧, 𝑡) = ⃗⃗⃗ ⃗⃗ ⃗𝐸0𝑒− 1
2 𝑛𝑘0𝑧 tan 𝛿 sin (𝑛𝑘0𝑧 − 𝜔𝑡) (2)

where 𝑘0 = 𝜔/𝑐 and 𝑐 = 3.0 ⋅ 108 𝑚𝑠 is the speed of light in vacuum.
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B.4 Employ the approximation tan 𝛿 ≈ sin 𝛿 and find an expression for the coeffi-
cient 𝛽 defined in Task B.2 in terms of the other parameters.

0.6pt

Figure 5. The arrows indicate the variation with temperature across the curves from 0∘C to
100∘C.

Figure 5 depicts 𝜀ℓ (blue) and 𝜀𝑟 (red) for both pure water (solid lines) and a dilute solution of salt in water
(dashed lines) as functions of wavelength or frequency, at several different temperatures. The angular
frequency 𝜔 = 2𝜋 ⋅ 2.45 ⋅ 109 s−1 is indicated by a bold vertical line. Below we will consider microwave
radiation at this frequency only.

B.5 Use Figure 5 to address the following questions:
1. For water at 20∘C, find the penetration depth 𝑧1/2 at which the power per

unit volume is reduced to half of its value at 𝑧 = 0.
2. Indicate in the Answer Sheet whether the penetration depth of the mi-

crowave radiation into water increases, decreases or remains the same
with temperature.

3. Indicate in the Answer Sheet whether the penetration depth of the mi-
crowave radiation into soup (dilute salt solution) increases, decreases or
remains the same with temperature.

0.7pt
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Thermoacoustic Engine
A thermoacoustic engine is a device that converts heat into acoustic power, or sound waves - a form of
mechanical work. Likemany other heatmachines, it can be operated in reverse to become a refrigerator,
using sound to pump heat from a cold to a hot reservoir. The high operating frequencies reduce heat
conduction and eliminate the need for any working chamber confinement. Unlike many other engine
types, the thermoacoustic engine has no moving parts except the working fluid itself.

The efficiencies of thermoacoustic machines are typically lower than other engine types, but they have
advantages in set up and maintenance costs. This creates opportunities for renewable energy applica-
tions, such as solar-thermal power plants and utilization of waste heat. Our analysis will focus on the
creation of acoustic energy within the system, ignoring the extraction or conversion for powering exter-
nal devices.

Part A: Sound wave in a closed tube (3.7 points)
Consider a thermally insulating tube of length 𝐿 and cross-sectional area 𝑆, whose axis lies along the 𝑥
direction. The two ends of the tube are located at 𝑥 = 0 and 𝑥 = 𝐿. The tube is filled with an ideal gas
and is sealed on both ends. At equilibrium, the gas has temperature 𝑇0, pressure 𝑝0 and mass density
𝜌0. Assume that viscosity can be ignored and that the gas motion is only in the 𝑥 direction. The gas
properties are uniform in the perpendicular 𝑦 and 𝑧 directions.

Figure 1

A.1 When a standing soundwave forms, the gas elements oscillate in the 𝑥direction
with angular frequency 𝜔. The amplitude of the oscillations depends on each
element’s equilibrium position 𝑥 along the tube. The longitudinal displacement
of each gas element from its equilibrium position 𝑥 is given by

𝑢(𝑥, 𝑡) = 𝑎 sin(𝑘𝑥) cos(𝜔𝑡) = 𝑢1(𝑥) cos(𝜔𝑡) (1)

(please note the 𝑢 here describes the displacement of a gas element)
 
where 𝑎 ≪ 𝐿 is a positive constant, 𝑘 = 2𝜋/𝜆 is the wavenumber and 𝜆 is the
wavelength. What is the maximum possible wavelength 𝜆max in this system?

0.3pt

We will assume throughout the question an oscillation mode of 𝜆 = 𝜆max.

Now, consider a narrow parcel of gas, located at rest between 𝑥 and 𝑥 + Δ𝑥 (Δ𝑥 ≪ 𝐿). As a result of the
displacement wave of Task A.1, the parcel oscillates along the 𝑥 axis and undergoes a change in volume
and other thermodynamic properties.

Throughout the following tasks assume all these changes to the thermodynamic properties to be small
compared to the unperturbed values.
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A.2 The parcel volume 𝑉 (𝑥, 𝑡) oscillates around the equilibrium value of 𝑉0 = 𝑆Δ𝑥
and has the form

𝑉 (𝑥, 𝑡) = 𝑉0 + 𝑉1(𝑥) cos(𝜔𝑡). (2)

Obtain an expression for 𝑉1(𝑥) in terms of 𝑉0, 𝑎, 𝑘 and 𝑥.

0.5pt

A.3 Assume that the total pressure of the gas, as a result of the sound wave, takes
the approximate form

𝑝(𝑥, 𝑡) = 𝑝0 − 𝑝1(𝑥) cos(𝜔𝑡). (3)

Considering the forces acting on the parcel of gas, compute the amplitude 𝑝1(𝑥)
of the pressure oscillation to leading order, in terms of the position 𝑥, the equi-
librium density 𝜌0, the displacement amplitude 𝑎 and the wave parameters 𝑘
and 𝜔.

0.7pt

At acoustic frequencies, the thermal conductivity of the gas can be neglected. Wewill treat the expansion
and contraction of gas parcels as purely adiabatic, satisfying the relation 𝑝𝑉 𝛾 = const, where 𝛾 is the
adiabatic constant.

A.4 Use the relation above and the results of the previous tasks to obtain an expres-
sion for the speed of sound waves 𝑐 = 𝜔/𝑘 in the tube, to first order. Express
your answer in terms of 𝑝0, 𝜌0 and the adiabatic constant 𝛾.

0.3pt

A.5 The change in the gas temperature due to the adiabatic expansion and contrac-
tion, as a result of the sound wave, takes the form:

𝑇 (𝑥, 𝑡) = 𝑇0 − 𝑇1(𝑥) cos(𝜔𝑡). (4)

Compute the amplitude 𝑇1(𝑥) of the temperature oscillations in terms of 𝑇0, 𝛾,
𝑎, 𝑘 and 𝑥.

0.7pt

A.6 For the purpose of this task only, we assume a weak thermal interaction be-
tween the tube and the gas. As a result, the standing sound wave remains
almost unchanged, but the gas can exchange a small amount of heat with the
tube. The heating due to viscosity can be neglected.
For each of the points in Figure 2 (A, C at the edges of the tube, B at the center)
state whether the temperature of the tube at that point will increase, decrease
or remain the same over a long time.

1.2pt

Figure 2
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Part B: Sound wave amplification induced by external thermal contact (6.3 points)
A stack of thin well-spaced solid plates is placed inside the tube. The plates of the stack are aligned in
parallel to the tube axis, so as not to obstruct the flow of gas along the tube. The center of the stack is
positioned at 𝑥0 = 𝐿/4, and spans a width of ℓ ≪ 𝐿 along the tube axis, filling its entire cross section.
The right and left edges of the stack are held at temperature difference 𝜏 . The left edge of the stack, at
𝑥𝐻 = 𝑥0 − ℓ/2, is held by an external thermal reservoir at temperature 𝑇𝐻 = 𝑇0 + 𝜏/2, and at the same
time, its right edge, at 𝑥𝐶 = 𝑥0 + ℓ/2, is held at a temperature 𝑇𝐶 = 𝑇0 − 𝜏/2.
The plate stack allows a slight longitudinal heat flow to maintain a constant temperature gradient be-
tween its edges, such that 𝑇plate(𝑥) = 𝑇0 − 𝑥−𝑥0

ℓ 𝜏 .

Figure 3. A sketch of the system. (A) and (B) denote the hot and cold heat reservoirs respec-
tively. (D) denotes the stack.

To analyze the effect of the thermal contact between the plate stack and the gas on the sound waves in
the tube, make the following assumptions:

• As in the previous part, all changes to the thermodynamic properties are small compared to the
unperturbed values.

• The system operates in the fundamental standing-wave mode of the longest possible wavelength.
It is only slightly modified by the presence of the plate stack.

• The stack is much shorter than the wavelength ℓ ≪ 𝜆max, and can be positioned far enough from
both displacement and pressure nodes, so that the displacement 𝑢(𝑥, 𝑡) ≈ 𝑢(𝑥0, 𝑡) and the pressure
𝑝(𝑥, 𝑡) ≈ 𝑝(𝑥0, 𝑡) may be considered uniform over the entire length of the stack.

• We may neglect any edge effects, caused by the parcels moving in and out of the stack.

• The temperature difference between the ends of the plate stack, i.e. between the hot and the cold
reservoirs, is small compared to the absolute temperature: 𝜏 ≪ 𝑇0.

• Heat conduction through the stack, through the gas, and along the tube are all negligible. The only
significant sources of heat transfer are convection due to the motion of the gas and conduction
between the gas and the stack.
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B.1 Consider a specific parcel of gas in the region of the stack, originally at 𝑥0 = 𝐿/4.
As the parcel moves within the stack, the local temperature of the nearby part
of the stack changes as follows:

𝑇env(𝑡) = 𝑇0 − 𝑇st cos(𝜔𝑡). (5)

Express 𝑇st in terms of 𝑎, 𝜏 and ℓ.

0.4pt

B.2 Above which critical temperature difference 𝜏cr will the gas be conveying heat
from the hot reservoir to the cold one? Express 𝜏cr in terms of 𝑇0, 𝛾, 𝑘 and ℓ.

1.0pt

B.3 Obtain the general approximate expression for the heat flow 𝑑𝑄
𝑑𝑡 into a small

parcel of gas as a linear function of its volume and pressure change rates. Ex-
press your answer in termsof the rate of volume change 𝑑𝑉

𝑑𝑡 , the rate of pressure
change 𝑑𝑝

𝑑𝑡 , the unperturbed equilibrium values of parcel pressure and volume
𝑝0 ,𝑉0 and the adiabatic index 𝛾. (Youmay use the expression for themolar heat
capacity at constant volume 𝑐𝑣 = 𝑅

𝛾−1 , where 𝑅 is the gas constant.)

0.8pt

The limited heat flow rate between the parcel and the stack causes a phase difference between the
pressure and volume oscillations of the parcel. We will see how this generates work.

Let the heat flux into the parcel from the stack be proportional to the temperature difference between
the parcel and the neighboring element of the stack, given approximately by 𝑑𝑄

𝑑𝑡 = −𝛽𝑉0(𝑇st −𝑇1) cos(𝜔𝑡).
Here 𝑇1 and 𝑇st are the temperature oscillation amplitudes of the gas parcel and the neighbouring stack
from Tasks A.5 and B.1, respectively, and 𝛽 > 0 is a constant. Assume that at the machine’s operating
frequencies, the change in gas temperature as a result of this heat flow is insignificant compared to both
𝑇1 and 𝑇st.

B.4 In order to calculate work, we will consider a change to the volume of the mov-
ing parcel as a result of the thermal contact with the stack. Let us write the
pressure and the volume of the parcel under the stack’s influence in the form:

𝑝 = 𝑝0 + 𝑝𝑎 sin(𝜔𝑡) − 𝑝𝑏 cos(𝜔𝑡),
𝑉 = 𝑉0 + 𝑉𝑎 sin(𝜔𝑡) + 𝑉𝑏 cos(𝜔𝑡). (6)

Given 𝑝𝑎 and 𝑝𝑏, find the coefficients 𝑉𝑎and 𝑉𝑏. Express your answer in terms of
𝑝𝑎, 𝑝𝑏, 𝑝0, 𝑉0, 𝛾, 𝜏 , 𝜏cr, 𝛽, 𝜔, 𝑎 and ℓ.

1.9pt

B.5 Obtain an approximate expression for the acoustic work per unit volume 𝑤 pro-
duced by the gas parcel over one cycle. Integrate over the volume of the stack
to obtain the total work 𝑊tot generated by the gas over one cycle. Express 𝑊tot
in terms of 𝛾, 𝜏 , 𝜏cr, 𝛽, 𝜔, 𝑎, 𝑘 and 𝑆.

0.8pt
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B.6 Obtain an approximate expression for the heat 𝑄tot transported from the left
side of the plane 𝑥 = 𝑥0 to the right, over a cycle. Express your answer in terms
of 𝜏 , 𝜏cr, 𝛽, 𝜔, 𝑎, 𝑆, ℓ.
(Hint: you may use the formula 𝑗 = 𝑄 𝑑𝑢

𝑑𝑡 for the heat current due convection.)
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B.7 Find the efficiency 𝜂 of the thermoacoustic engine. The efficiency is defined as
the ratio of the generated acoustic work to the heat drawn from the hot reser-
voir. Express your answer in terms of the temperature difference 𝜏 between
the hot and the cold reservoir, the critical temperature difference 𝜏cr and the
Carnot efficiency 𝜂𝑐 = 1 − 𝑇𝐶/𝑇𝐻 .
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