

Equações polinomiais

Leonardo do Carmo, Rodrigo Porto

1. Equações Polinomiais

1.1 Introdução

Neste material, são ensinadas técnicas de resolução de equações polinomiais. Na prática, uma equação polinomial é o mesmo que uma equação funcional, com a diferença de que o universo das soluções possíveis são polinômios, que são apenas um tipo específico de função

1.2 Polinômio

Apenas relembrando (o leitor deve conhecer as principais propriedades de polinômios antes de ler este artigo), um polinômio P(x) de grau n é uma função nos conjuntos dos números reais, inteiros, racionais, irracionais ou complexos, tal que:

$$P(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0 = \sum_{i=0}^n a_i x^i$$

em que os coeficientes também pertencem a um desses conjuntos.

1.3 Identidade de polinômios

(Identidade de polinômios) Dados dois polinômios não constantes P(x) e Q(x) com coeficientes $a_1, a_2, ..., a_n$ e $b_1, b_2, ..., b_k$ e tal que:

$$P(x) = Q(x)$$

para todo x, logo n = k e $a_i = b_i$ para todo $1 \le i \le n$

Demonstração. De fato, como P(x) = Q(x) para todo x, então todas as raízes de P(x) são também raízes de Q(x), ou seja, k = n. Temos que:

$$\sum_{i=0}^{n} a_i x^i = \sum_{i=0}^{n} b_i x^i \implies \sum_{i=0}^{n} (a_i - b_i) x^i = 0 = P(x) - Q(x)$$

Considerando o polinômio H(x) = P(x) - Q(x), temos infinitos valores de x são tais que H(x) = 0, portanto H(x) só pode ser o polinômio nulo.

Deste modo, temos que $a_i - b_i = 0$ para todo i, donde $a_i = b_i$.

1.4 Raízes da unidade

Definição 1: (Raízes da Unidade) Um número é dito n-ésima raiz da unidade se é raiz do polinômio:

$$P(X) = X^n - 1$$

Definição 2: Denotamos o número cis(x) para um número x como sendo cis(x) = cos(x) + isen(x) em que i é a unidade imaginária.

Proposição 1: Sendo $\omega = cis(\frac{2\pi}{n})$, temos que x é uma raiz da unidade se e somente se $x = \omega^k$ para algum k inteiro não negativo.

Demonstração. Primeiro notemos que para quaisquer número reais x,y (prove isso!):

$$cis(x)cis(y) = cis(x + y)$$

Em particular, $cis(x)^n = cis(nx)$ se aplicarmos essa propriedade n vezes. Deste modo, observemos que $w^n - 1 = cis(\frac{2\pi}{n})^n - 1 = cis(n \cdot \frac{2\pi}{n}) - 1 = cis(2\pi) - 1 = cos(2\pi) + isen(2\pi) - 1 = 0$. Dessa forma, temos que ω é raiz da unidade, e, portanto, sabemos que todo número ω^k também é raiz da unidade, uma vez que $(\omega^k)^n = (\omega^n)^k = 1^k = 1$. Ué, então isso quer dizer que esse polinômio tem infinitas raízes? Na verdade não, como o período da função cis é 2π (por quê?), temos que se x = nt + r com r < n logo $\omega^x = \omega^{nt+r} = \omega^r$. Portanto, as "raízes originárias"são aquelas em que k = 0,1,2,...,n-1, ou seja, n raízes. Como P(X) tem grau n, quer dizer que essas são as únicas raízes de fato, uma vez que se ele tivesse outra isso contradiziria o fato de P(X) ter no máximo n raízes

Proposição 2: Sendo ω uma raiz n-ésima da unidade, com $\omega \neq 1$ logo:

$$1 + \omega + \omega^2 + \dots + \omega^{n-1} = 0$$

Demonstração. De fato, temos que $1+\omega+\omega^2+\cdots+\omega^{n-1}=\frac{\omega^n-1}{\omega-1}=0$ pela própria definição de ω

Essa segunda proposição é importante pois na maioria dos problemas de polinômios que há uma estrutura do tipo $1+x+x^2+\cdots+x^n$ pode ser útil usar substituições com raízes da unidade.

Exemplo 1: (AIME 2004) O polinômio

$$P(x) = (1 + x + x^{2} + \dots + x^{17})^{2} - x^{17}$$

tem 34 raízes complexas da forma $z_k = r_k cis(2\pi a_k)$ com $k=1,\cdots,34$ e $0 < a_1 \le a_2 \le \cdots \le a_{34} < 1$ e $r_k > 0$. Calcule $a_1 + a_2 + a_3 + a_4 + a_5$.

Solução: Olhando para o termo que está ao quadrado, dá vontade de tomar uma raíz 17-ésima da unidade pela Proposição 2. Sendo ω tal que $\omega^{17} - 1 = 0$, temos que:

$$P(\omega) = (1 + \omega + \omega^2 + \dots + \omega^{17})^2 - \omega^{17} = (1)^2 - 1 = 0$$

Logo todo ω^k é raiz desse polinômio. Em particular, temos que $x^{17}-1\mid P(x)$. A partir daí podemos fazer uma divisão polinomial e ver que $P(x)=\frac{(x^{17}-1)(x^{19}-1)}{(x-1)^2}$. Um outro método de ver isso também é o seguinte: Observe que para $x\neq 1$, temos que $P(x)=(\frac{x^{18}-1}{x-1})^2-x^{17}=\frac{x^{36}-2x^{18}+1-(x-1)^2x^{17}}{(x-1)^2}=\frac{x^{36}-x^{19}-x^{17}+1}{(x-1)^2}=\frac{x^{17}(x^{19}-1)-(x^{19}-1)}{(x-1)^2}$

Assim, todas as raízes da unidade de 17 e 19 são também raízes de P(X) (exceto o 1!). Agora que entra a parte de raízes da unidade. Pela Proposição 1 nós temos que as 5 raízes correspondentes a a_1,a_2,a_3,a_4,a_5 serão respectivamente $(cis(\frac{2\pi\cdot 1}{19}),cis(\frac{2\pi\cdot 2}{17}),cis(\frac{2\pi\cdot 2}{17}),cis(\frac{2\pi\cdot 2}{17}),cis(\frac{2\pi\cdot 2}{17}))$. Ou seja, teremos:

$$a_1 + a_2 + a_3 + a_4 + a_5 = \frac{1}{19} + \frac{1}{17} + \frac{2}{19} + \frac{2}{17} + \frac{3}{19} = \frac{159}{323}$$

1.5 Olhando o grau de cada lado

As vezes vale a pena olhar o que a condição do problema implica sobre o grau do polinômio. Muitos problemas podem ser resolvidos com o seguinte lema.

Lema 1: Dado um polinômio não constante P(x) com grau Q e coeficiente líder a, logo P(x) é estritamente crescente a partir de um x suficientemente grande se a > 0 e decrescente caso a < 0. Em particular, existe uma constante C tal que $|P(x)| > C \cdot x^Q$ para x grande.

Exemplo 2: (Austrália 2017) Considere P(x) um polinômio com coeficientes reais tais que:

- (a) P(2017) = 2016
- (b) $P(x^2 + 1) = (P(x) + 1)^2$

Encontre todos os valores possíveis de P(x)

Solução: Substituindo x=2017 na equação, temos que $P(2017^2+1)=2017^2$. Podemos fazer isso infinitas vezes, sempre substituindo o anterior, de modo que todo $k \in B$:

$$B = \{2017, (2017^2 + 1), (2017^2 + 1)^2 + 1, ...\}$$

é tal que P(k) = k - 1 (verifique!). Isso nos faz desconfiar que P(x) = x - 1 é solução, e de fato é. Suponhamos que o grau de P(x) seja $Q \ge 2$. Temos $P(x^2 + 1) = (P(x) + 1)^2 \ge 0$ para todo x real, e portanto o coeficiente líder de P(x) é positivo pelo **Lema 1**. Deste modo, existe C > 0 tal que $P(x) > Cx^Q \ge Cx^2 > x - 1$ para x grande. No entanto, como há infinitos números em B e este conjunto não possui um máximo, terá um x tal que P(x) = x - 1 e ao mesmo tempo P(x) > x - 1 Absurdo! Deste modo P(x) = ax + b para reais a,b:

$$a(x^2 + 1) + b = (ax + b + 1)^2$$

Podemos expandir o lado direito e encontrar a=1 e b=-1, por identidade de polinômios. Portanto P(x)=x-1 é única solução.

Lema 2: Se P(x) e Q(x) são dois polinômios tal que $deg(P) = x_1$ e $deg(Q) = x_2$, logo:

$$deg(P(x)Q(x)) = x_1 + x_2 \tag{1}$$

$$deq(P(Q(x)) = x_1 \cdot x_2 \tag{2}$$

$$deg(P(x^k)) = k \cdot x_1 \tag{3}$$

1.6 As raízes

As raízes de um polinômio P(x) diz muito sobre ele. Em particular, pode-se definir qualquer polinômios através de suas raízes e o seu coeficiente líder.

Proposição 3: Dado um polinômio P(x) com exatamente n raízes $r_1, r_2, ..., r_n$ e coeficiente líder a_n , temos:

$$P(x) = a_n(x - r_1)(x - r_2)...(x - r_n)$$

Ainda assim, as raízes podem ajudar mais ainda na hora de resolver equações polinomiais, como olhar para o tamanho entre elas. Segue um exemplo:

Exemplo 3: Encontre todos os polinômios P(x) não constantes com coeficientes reais tal que:

$$P(x)P(x+1) = P(x^2 + x + 1)$$

Solução: Seja r uma raiz complexa de P(x) com |r| máximo. Logo $P(r)P(r+1)=0=P(r^2+r+1)\Longrightarrow r^2+r+1$ é raiz desse polinômio. Substituindo x por r-1 temos que $(r-1)^2+(r-1)+1=r^2-r+1$ também é raiz desse polinômio.

Pela maximalidade, temos $|r| \ge |r^2 \pm r + 1|$, logo:

$$2|r| = |r| + |r| \ge |r^2 + r + 1| + |r^2 - r + 1|$$

No entanto, pela desigualdade triangular temos que

$$|r^2 + r + 1| + |r^2 - r + 1| \ge |(r^2 + r + 1) - (r^2 - r + 1)| = 2|r|$$

. Portanto deve ocorrrer igualdade! Em particular temos $r^2+r+1=-(r^2-r+1)\Longrightarrow r=\pm i$. Desta forma temos $P(x)=(x^2+1)^QR(x)$ para algum polinômio R(x) com somente raízes i ou -i. Substituindo na equação original chegamos em R(x)=1, portanto a única solução é $P(x)=(x^2+1)^Q$ para algum inteiro positivo Q.

1.7 O polinômio de Chebyshev

Em diversos problemas de álgebra vale a pena tentar transformar variáveis em funções trigonométricas. O polinômio de Chebyshev é útil nesse sentido.

Definição 3: O *n*-ésimo polinômio de Chebyshev, denotado como $T_n(x)$, é tal que $T_n(cos x) = cos(nx)$.

Teorema: Os polinômios de Chebyshev são dados por $T_0(x) = 1, T_1(x) = x$ e para $n \ge 2$:

$$T_n(x) = 2x \cdot T_{n-1}(x) - T_{n-2}(x)$$

Demonstração. Temos que:

$$2\cos(nx)\cos(x) = \cos((n+1)x) + \cos((n-1)x) \Longleftrightarrow$$

$$cos((n+1)x) = 2cosx \cdot cos(nx) - cos((n-1)x)$$

Seja $y_k = cos(kx)$. Ficamos com a seguinte recursão:

$$y_{n+1} = 2y_1 \cdot y_n - y_{n-1}$$

Como $T_n(x) = y_n$ e como a função cos(x) é contínua no intervalo [-1,1], significa que a equação polinomial em T tem infinitas raízes, ou seja, o teorema segue por identidade de polinômios.

Exemplo 4: Prove que para todo inteiro positivo n, existe um polinômio P(x) com grau n e um polinômio Q(x) com grau n-1 tal que:

$$P(x)^2 - 1 = (x^2 - 1)Q(x)^2$$

Solução: Conjecturamos que $P(x) = T_n(x)$ sempre funciona. Vamos analisar primeiramente os números $-1 \le z \le 1$, pois assim podemos assumir z = cos(x) para algum x.

Temos que $T_n(z)^2 - 1 = cos(nx)^2 - 1 = (cos(nx) + 1)(cos(nx) - 1)$. Portanto suas raízes são quando cos(nx) = 1 ou cos(nx) = -1. Nesse caso, para algum inteiro l teremos $nx = 2\pi l$ ou $nx = 2\pi l + \pi \iff x = \frac{2\pi l}{n}$ ou $x = \frac{2\pi l + \pi}{n}$ em que l = 1, 2, ..., n - 1.

Com isso, conseguimos parear as raízes da forma $\left[\frac{2\pi l}{n}, \frac{2\pi(n-l)}{n}\right]$ e $\left[\frac{2\pi l+\pi}{n}, \frac{2\pi(n-l-1)+\pi}{n}\right]$, uma vez que $\cos(2\pi - x) = \cos(x)$ (verifique!). Ou seja, no intervalo [-1,1], para alguma constante c que depende do coeficiente líder do polinômio do lado esquerdo:

$$T_n(x)^2 - 1 = (x^2 - 1)\left[c \cdot \prod_{l=1}^{n-1} (x - \cos(\frac{2\pi l}{n}))\right]^2$$

Portanto, como o grau de $T_n(x)$ é n pelo teorema anterior e achamos (n-1)+(n-1)+2=2n raízes, Q(x) está bem determinado. Sabemos então que vale a igualdade $T_n(x)^2-1=(x^2-1)Q(x)^2$, com o polinômio Q(x) dito acima, para todo $-1 \le x \le 1$. No entanto, como existem infinitos pontos nesse intervalo, segue por identidade de polinômios que tal polinômio Q(x) existe.

1.8 Polinômios nos inteiros

Se você estiver trabalhando com polinômios que possuem coeficientes inteiros, uma propriedade muito útil pode ser utilizada.

Teorema: Dado um polinômio P(x) com coeficientes inteiros e dois inteiros a,b, segue que:

$$a-b \mid P(a)-P(b)$$

Demonstração. Suponha que $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$. Logo

$$P(a) - P(b) = a_n(a^n - b^n) + a_{n-1}(a^{n-1} - b^{n-1}) + \dots + a_1(a - b)$$

Como
$$a-b \mid a^i-b^i$$
 para $i=1,2\cdots n$, segue portanto que $a-b \mid P(a)-P(b)$.

Embora possa parecer uma proposição óbvia, este pequeno teorema é frequentemente utilizado em diversos problemas olímpicos, portanto, é importante que o leitor esteja atento para uma eventual aplicação

2. Problemas para praticar

Problema 1: (USAMO 1976/5) Sejam A(x),B(x),C(x),D(x) polinômios com coeficientes reais tais que $D(x)(1+x+x^2+x^3+x^4)=A(x^5)+xB(x^5)+x^2C(x^5)$. Mostre que A(1)=0

Problema 2 (IMO 2004): Encontre todos os polinômios P com coeficientes reais tais que, para todos os reais a,b,c com ab+bc+ca=0, tenhamos a seguinte relação:

$$P(a-b) + P(b-c) + P(c-a) = 2P(a+b+c)$$

Problema 3: (Ibero 2019/2) Determine todos os polinômios P de grau $n \ge 1$ e coeficientes inteiros tais que para todo $x \in \mathbb{R}$, seja válido que:

$$P(x) = (x - P(0)).(x - P(1)) \cdots (x - P(n - 1)).$$

Problema 4: Encontre todos os polinômios P(x) não constantes com coeficientes reais tal que:

$$P(x)P(x+1) = P(x^2 + x + 1)$$

Problema 5: (Baltic Way 2008) Determine todos os polinômios P(x) com coeficientes reais tais que $P((x+1)^3) = (P(x)+1)^3$ e P(0)=0

Problema 6: Encontre todos os polinômios P(x), Q(x) tal que P(x)Q(x) = P(Q(x))

Problema 7 (Bielorússia/2019): Encontre todos os polinômios P(x), Q(x) tal que $P(Q(x)^2) = P(x)Q(x)^2$

Problema 8 (2021 AMC 12A) Suponha que as raízes do polinômio $P(x) = x^3 + ax^2 + bx + c$ são $\cos \frac{2\pi}{7}, \cos \frac{4\pi}{7}$, e $\cos \frac{6\pi}{7}$, em que os ângulos estão em radianos. Qual o valor de abc?:

Problema 9 (Cone Sul 2021) Dado um número inteiro $n \geq 3$, determine se existem n inteiros b_1, b_2, \ldots, b_n , distintos dois a dois (isto é, $b_i \neq b_j$ para todo $i \neq j$) e um polinômio P(x) com coeficientes inteiros, de forma que:

$$P(b_1) = b_2, P(b_2) = b_3, \dots, P(b_{n-1}) = b_n, P(b_n) = b_1$$

Problema 10 (USA TSTST 2014) Encontre todos os polinômios P(x) com coeficientes reais que satisfazem a equação $P(x\sqrt{2}) = P(x + \sqrt{1 - x^2})$ para todo x real, tal que $|x| \le 1$.

3. Dicas e soluções:

Problema 1: Considere ω como sendo a quinta raiz da unidade. Na equação, substitua ω , ω^2 , ω^3 , ω^4 . Com a **Proposição 2** e o sistema de cinco equações encontre A(1) = B(1) = C(1) = D(1) = 0.

Problema 2: Primeiro, mostre que o polinômio é par. Após isso, nomeie o grau do polinômio P de n, encontre uma boa tripla (a,b,c) que satisfaça a condição e cote n na equação acima. Conclua que $n \le 4$. Após isso, teste caso a caso fazendo conta.

Problema 3: Prove que P(0) = 0, substituindo x = 0 na equação. Depois, use divisibilidade (o polinômio está nos inteiros) para mostrar que P(1) = 0 ou P(1) = 2. Termine concluindo que P(x) = x é única solução.

Problema 5: Esse problema é semelhante ao **Exemplo 2**, só que ao invés de termos expoentes de 2 há expoentes de 3. A única solução é P(x) = x.

Problema 6: Chame de x_1 o grau de P e de x_2 o grau de Q. Utilize o **Lema 2** para concluir que $x_1 = x_2 = 0$ ou $x_1 = x_2 = 2$. Resolva quando P(x) = c quando c é uma constante e a partir daí considere polinômios genéricos de grau 2 para P e Q, substitua, expanda e iguale os dois polinômios.

Problema 7: Mostre que P tem grau 2 e Q tem grau 1. Após isso, considere polinômios genéricos para ambos, substitua na equação e escolha alguns x's espertos! Problema 8: Use manipulação algébrica com raízes heptagésimas da unidade. Também dá para fazer com o sétimo polinômio de Chebyshev!

Problema 9: Utilize a dica da seção 1.8! Você vai perceber que $b_1 - b_2 \mid b_2 - b_3 \mid \cdots \mid b_{n-1} - b_n \mid b_n - b_1$. Por que isso dá errado?

Problema 10: Troque x por cosy. Chegue em $P(\sqrt{2}cosy) = P(\sqrt{2}cos(y - \frac{\pi}{4}))$. Considere $H(x) = P(\frac{x}{\sqrt{2}})$. Olhe para o oitavo polinômio de Chebyshev: no que ele ajuda?

4. Bibliografia

https://artofproblemsolving.com/