Solution / marking scheme - Characterizing Soil Colloids (10 points)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Analysis of motions of colloidal particles (1.6 points)

A. 1 (total 0.8 pt)
(0.4 pt)
$v_{0}=\frac{I_{0}}{M}$
partial points
$(0.2 \mathrm{pt}) \quad M v_{0}=I_{0}$
(0.4 pt)
$\tau=\frac{M}{\gamma}$

- 0.4 pt if the answers are $v_{0}=M / \gamma$ and $\tau=I_{0} / M$. partial points
$(0.2 \mathrm{pt}) \quad M \dot{v}=-\gamma v(t)$
A. 2 (total 0.8 pt)
(0.6 pt)
$v(t)=\sum_{i} \frac{I_{i}}{M} e^{-\left(t-t_{i}\right) / \tau}$
- 0.4 pt if $\frac{I_{i}}{M} e^{-\left(t-t_{i}\right) / \tau}$ is written. The subscript can be any dummy variable used in the summation symbol.
- 0.2 pt if sum is taken (if Σ is written).
- the range of sum is not considered here (even if it is wrong).
- $\tau=M / \gamma$ can be substituted.
(0.2 pt)
the inequality specifying the range of t_{i} that needs to be considered:
$0<t_{i}<t$
- < can be \leq (full mark is given).
- 0.2 pt (full mark) is given to $t_{i}<t$ (without $0<$)
- No point is given to $t_{i}>0$ solely.

Part B. Effective equation of motion (1.8 points)
B. 1 (total 1.0 pt)
(0.5 pt) Usable letters: C, δ, t

$$
\langle\Delta x(t)\rangle=0
$$

(0.5 pt) Usable letters: C, δ, t

$$
\left\langle\Delta x(t)^{2}\right\rangle=C \delta t
$$

partial points

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad \Delta x(t)=\sum_{n=1}^{N} v_{n} \delta \tag{B.1.1}
\end{equation*}
$$

- 0.2 pt if δ is missing.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad\left\langle\Delta x(t)^{2}\right\rangle=\sum_{n=1}^{N} C \delta^{2}=N C \delta^{2}=C \delta t \tag{B.1.2}
\end{equation*}
$$

- 0.2 pt only if $C \delta t$ is written. 0.1 pt if only $\sum_{n=1}^{N} C \delta^{2}$ or $N C \delta^{2}$ is written.
B. 2 (total 0.8 pt)
(0.4 pt)
$\alpha=-1$
(0.4 pt)

$$
\beta=1
$$

Part C. Electrophoresis (2.7 points)

C. 1 (total 0.5 pt$)$

$(0.5 \mathrm{pt})$ Usable letters: $v, \delta, n\left(x_{0}\right), \frac{d n}{d x}\left(x_{0}\right)$

$$
N_{+}\left(x_{0}\right)=\frac{1}{2} n\left(x_{0}\right) v-\frac{1}{4} \frac{d n}{d x}\left(x_{0}\right) v^{2} \delta
$$

- 0.3 pt if δ or A or both are multiplied unnecessarily (subtraction of 0.2 pt)
- 0.4 pt if either coefficient (or both) is wrong (subtraction of 0.1 pt)
- 0.4 pt if the sign of the second term is wrong (subtraction of 0.1 pt)
- If more than one of the above mistakes are made, points to subtract accumulate.
partial points
$(0.3 \mathrm{pt}) \quad N_{+}\left(x_{0}\right)=\int_{x_{0}-v \delta}^{x_{0}} \frac{n(x)}{2 \delta} d x \quad$ or $\quad N_{+}\left(x_{0}\right)=\frac{v}{2} n\left(x_{0}-v \delta / 2\right)$
- 0.2 pt if δ or A or both are multiplied unnecessarily (subtraction of 0.1 pt)
- 0.2 pt if any coefficient is wrong (subtraction of 0.1 pt)
- 0.2 pt if the integration range is $\int_{x_{0}}^{x_{0}+v \delta}$ (subtraction of 0.1 pt)
- 0.2 pt if $N_{+}\left(x_{0}\right)=\frac{v}{2} n\left(x_{0}+v \delta / 2\right)$ (subtraction of 0.1 pt)
- If more than one of the above mistakes are made, points to subtract accumulate.

C. $2($ total 0.7 pt$)$

$(0.4 \mathrm{pt})$ Usable letters: $C, \delta, n\left(x_{0}\right), \frac{d n}{d x}\left(x_{0}\right)$

$$
J_{D}(x)=-\frac{1}{2} \frac{d n}{d x}(x) C \delta
$$

- 0.3 pt if the sign or the coefficient is wrong (but pay attention to carryover from C.1).
partial points
$(0.1 \mathrm{pt}) \quad N_{-}\left(x_{0}\right)=\frac{1}{2} n\left(x_{0}\right) v+\frac{1}{4} \frac{d n}{d x}\left(x_{0}\right) v^{2} \delta$
(0.1 pt) Usable letters: C, δ

$$
D=\frac{1}{2} C \delta
$$

(0.2 pt) Usable letters: D, t

$$
\left\langle\Delta x(t)^{2}\right\rangle=2 D t
$$

- No point if the answer includes C or δ.

C. 3 (total 0.5 pt$)$

(0.5 pt) Usable letters: $n(x), T, Q, E, k$

$$
\frac{d n}{d x}=\frac{n(x)}{k T} Q E
$$

partial points

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad \Pi(x) A+n(x) A \Delta x Q E=\Pi(x+\Delta x) A \tag{C.3.1}
\end{equation*}
$$

C. 4 (total 0.5 pt$)$
(0.3 pt)

$$
\langle v(t)\rangle=\frac{Q E}{\gamma}\left(1-e^{-t / \tau}\right)
$$

- $\tau=M / \gamma$ can be substituted.
partial points
$(0.3 \mathrm{pt}) \quad M \frac{d\langle v(t)\rangle}{d t}=-\gamma\langle v(t)\rangle+Q E$
(0.2 pt)

$$
u=\frac{Q E}{\gamma}
$$

C. 5 (total 0.5 pt$)$
(0.5 pt) Usable letters: k, γ, T

$$
D=\frac{k T}{\gamma}
$$

$(0.2 \mathrm{pt}) \quad J_{D}(x)=-\frac{D Q E}{k T} n(x)$
$(0.2 \mathrm{pt}) \quad J_{Q}(x)=\frac{Q E}{\gamma} n(x)$

Part D. Mean square displacement (2.4 points)
D. 1 (total 1.0 pt)
(1.0 pt)
$N_{A}=5.6 \times 10^{23} \mathrm{~mol}^{-1}$

- No reduction if the unit is missing.
- 0.8 pt if the second digit is wrong but the value is in the range $5.5-5.7 \times 10^{23}$. partial points
$(0.5 \mathrm{pt}) \quad\left\langle\Delta x^{2}\right\rangle=\frac{R T \Delta t}{3 \pi a \eta N_{A}}$
- 0.3 pt if both the answer of C. $2\left(\left\langle\Delta x^{2}\right\rangle=2 D \Delta t\right)$ and that of C. $5\left(D=\frac{k T}{\gamma}\right)$ are given in the worksheet for D.1. The combination of them $\left(\left\langle\Delta x^{2}\right\rangle=\frac{2 k T \Delta t}{\gamma}\right)$ is also acceptable. $k=R / N_{A}$ and $\gamma=6 \pi a \eta$ can be substituted here.
- No reduction if t is used for Δt.

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad\left\langle\Delta x^{2}\right\rangle=6.34 \mu \mathrm{~m}^{2} \tag{D.1.2}
\end{equation*}
$$

- No reduction if the value is in the range $6.2-6.4 \mu \mathrm{~m}^{2}$.
- 0.2 pt if the value is in the range $4-9 \mu \mathrm{~m}^{2}$ or if the standard deviation of Δx is in the range 2-3 $\mu \mathrm{m}$.
- Subtract 0.1 pt if the unit is missing or wrong.

D. 2 (total 0.8 pt)

(0.2 pt) Usable letters: u, D, t

$$
\left\langle\Delta x^{2}\right\rangle=(u t)^{2}+2 D t
$$

(0.2 pt)
$\left\langle\Delta x^{2}\right\rangle \propto \begin{cases}t & \text { for small } t \\ t^{2} & \text { for large } t\end{cases}$

- 0.1 pt independently for each answer.
(0.2 pt)
$t_{*}=\frac{2 D}{u^{2}}$
(0.2 pt)
Points are given according to the criteria given below.

- 0.1 pt if the graph is monotonically increasing and convex (no points if there are multiple curves that look like the answered graph)
- 0.1 pt if t_{*} is written between the two power-law regions (the label can be either t_{*} or $\log t_{*}$).

D. 3 (total 0.6 pt)

(0.6 pt)
$\left\langle\Delta x^{2}\right\rangle= \begin{cases}2 D t & \text { for small } t \\ u_{0}^{2} t^{2} & \text { for intermediate } t \\ \left(u_{0}^{2} \delta\right) t & \text { for large } t\end{cases}$

- 0.2 pt independently for each answer.
- Wrong answer in B. 1 is not considered.

Part E. Water purification (1.5 points)

E. 1 (total 1.5 pt)

(1.5 pt)
$c=\frac{8 B^{2} \epsilon^{3}(k T)^{5}}{e^{4} N_{A} A^{2} q^{6}}$

- 1.3 pt if only the coefficient is wrong (e is a part of the coefficient) (then no further partial point is given)
partial points
(0.5 pt) $\min U^{\prime}(d)=0$
- No point for $U^{\prime}(d)=0$ solely (without indicating what d to consider) or $U^{\prime}(a)=0$.
- 0.2 pt if the graph of the potential with an energy barrier (the graph first increases monotonically, then decreases monotonically) is drawn (this is the potential for $c<c_{*}$)
- independently, 0.2 pt if the graph of the potential without an energy barrier (the graph increases monotonically) is drawn (this is the potential for $c>c_{*}$)
$(0.2 \mathrm{pt}) \quad U^{\prime}(d)=\frac{A}{d^{2}}-\frac{B \epsilon(k T)^{2}}{q^{2} \lambda} e^{-d / \lambda}=0$
$(0.2 \mathrm{pt}) \quad U^{\prime \prime}(d)=-\frac{2 A}{d^{3}}+\frac{B \epsilon(k T)^{2}}{q^{2} \lambda^{2}} e^{-d / \lambda}=0$
- 0.2 pt (out of the 0.4 pt right above) if both $U^{\prime}(d)=0$ and $U^{\prime \prime}(d)=0$ are written as simultaneous equations, without their correct explicit forms.
(0.2 pt) $\quad d=2 \lambda=\sqrt{\frac{A q^{2} \lambda}{B \epsilon(k T)^{2}}}$
$(0.3 \mathrm{pt}) \quad \lambda=\frac{e^{2} A q^{2}}{4 B \epsilon(k T)^{2}}$
- 1.4 pt is given in total if (E.1.5) is written.
- 1.2 pt if only the coefficient is wrong (e is a part of the coefficient)

E. 1 (cont.)

Another solution: it is also physically reasonable to consider $\max U(d)=0$ instead of (E.1.1), though this does not meet the requirements given in the question. Therefore, partial points may be given as follows if the question is answered along this line.

partial points

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad \max U(d)=0 \tag{E.1.6}
\end{equation*}
$$

- No point for $U(d)=0$ solely (without indicating what d to consider) or $U(a)=0$.
- 0.2 pt if the graph of the potential with an energy barrier that is higher than $U=0$ or $U(d \rightarrow \infty)$ is drawn (this is the potential for $c<c_{*}$)
- independently, 0.2 pt if the graph of the potential with an energy barrier that is lower than $U=0$ or $U(d \rightarrow \infty)$ is drawn (this is the potential for $c>c_{*}$)

$$
\begin{equation*}
U(d)=-\frac{A}{d}+\frac{B \epsilon(k T)^{2}}{q^{2}} e^{-d / \lambda}=0 \tag{E.1.7}
\end{equation*}
$$

$(0.2 \mathrm{pt}) \quad U^{\prime}(d)=\frac{A}{d^{2}}-\frac{B \epsilon(k T)^{2}}{q^{2} \lambda} e^{-d / \lambda}=0$

- No point for (E.1.7)
- 0.2 pt if both $U(d)=0$ are $U^{\prime}(d)=0$ are written as simultaneous equations

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad d=\lambda=\frac{e A q^{2}}{B \epsilon(k T)^{2}} \tag{E.1.9}
\end{equation*}
$$

- 1.2 pt is given in total if (E.1.9) is written.
- 1.0pt if only the coefficient is wrong (e is a part of the coefficient)

$$
\begin{equation*}
(0.1 \mathrm{pt}) \quad c=\frac{B^{2} \epsilon^{3}(k T)^{5}}{2 e^{2} N_{A} A^{2} q^{6}} \tag{E.1.10}
\end{equation*}
$$

- 1.3 pt is given in total if (E.1.10) is written.
- 1.1 pt if only the coefficient is wrong (e is a part of the coefficient)

T2-1

Solution / marking scheme - Neutron Stars (10 points)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Mass and stability of nuclei (2.5 points)

A. 1 (total 0.9 pt)
(0.9 pt)
$A=50$

- No reduction if $A=5.0 \times 10^{1}$.
- 0.8 pt if the value is in the range 49.5-50.4.

partial points

$(0.2 \mathrm{pt}) \quad \frac{B}{A}=a_{V}-a_{S} A^{-1 / 3}-\frac{a_{C}}{4} A^{2 / 3}$

- No reduction if the difference from (A.1.1) is only the overall coefficient. This rule is applied throughout.

$$
\begin{equation*}
(0.1 \mathrm{pt}) \frac{d(B / A)}{d A}=0 \tag{A.1.2}
\end{equation*}
$$

$(0.2 \mathrm{pt}) \quad \frac{a_{S}}{3} A^{-4 / 3}-\frac{a_{C}}{6} A^{-1 / 3}=0$

- Points for (A.1.2) are given if (A.1.3) is stated although (A.1.2) is not explicitly written.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad A=\frac{2 a_{S}}{a_{C}} \tag{A.1.4}
\end{equation*}
$$

- 0.7 pt is given if the correct expression for A appears even if the intermediate steps are not fully written.
A. 2 (total 0.9 pt)

(0.9 pt)

$Z^{*}=79$

- No reduction if $Z^{*}=78$.
- 0.8 pt if the value is in the range 77.5-79.4.

partial points

$(0.3 \mathrm{pt}) \quad-2 a_{C} \frac{Z^{*}}{A^{1 / 3}}-4 a_{\mathrm{sym}} \frac{2 Z^{*}-A}{A}=0$
$(0.4 \mathrm{pt}) \quad Z^{*}=\frac{1}{1+\frac{a_{C}}{4 a_{\mathrm{sym}}} A^{2 / 3}} \cdot \frac{A}{2}$

- No reduction if $a_{C} / 4 a_{\text {sym }}$ is replaced by the numerical value in the range $0.007-0.008$.
A. 3 (total 0.7 pt)
(0.7 pt)
$C_{\text {fission }}=0.70$
- No reduction if $C_{\text {fission }}=0.7$.

partial points

$(0.3 \mathrm{pt}) \quad a_{S}\left[A^{2 / 3}-2\left(\frac{A}{2}\right)^{2 / 3}\right]+a_{C}\left[\frac{Z^{2}}{A^{1 / 3}}-2 \frac{(Z / 2)^{2}}{(A / 2)^{1 / 3}}\right]>0$

- No point if a_{V} is not canceled.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad \frac{Z^{2}}{A}>\frac{2^{1 / 3}-1}{1-2^{-2 / 3}} \cdot \frac{a_{S}}{a_{C}} \tag{A.3.2}
\end{equation*}
$$

- Points for (A.3.1) are given if (A.3.2) is stated although (A.3.1) is not explicitly written.
- The coefficient may have different expressions, e.g., with $x=2^{1 / 3}$,

$$
\frac{x-1}{1-x^{-2}}=\frac{x^{2}}{1+x}=\frac{x}{1+x^{-1}}=\cdots=0.702414 \ldots
$$

Part B. Neutron star as a gigantic nucleus (1.5 points)
B. 1 (total 1.5 pt)
(0.8 pt)
$a_{\text {grav }}=6 \times 10^{-37} \mathrm{MeV}$

- No reduction if the unit is not written.
- 0.7 pt if only the order of magnitude is correct. partial points
$(0.4 \mathrm{pt}) \quad a_{\text {grav }}=\frac{3}{5} \frac{G m_{N}^{2}}{R_{0}}$
$(0.2 \mathrm{pt}) \quad a_{\text {grav }}=\frac{3}{5} \frac{\hbar c m_{N}^{2}}{R_{0} M_{P}^{2}}$
- Points for (B.1.1) are given if (B.1.2) is stated although (B.1.1) is not explicitly written.
- No reduction if \hbar is mistyped.
(0.7 pt)
$A_{c}=4 \times 10^{55}$
- No reduction for $A_{c}=5 \times 10^{55}$.
- 0.6 pt if only the order of magnitude is correct.
partial points
(0.2 pt) $\quad a_{V} A-a_{\text {sym }} A+a_{\text {grav }} A^{5 / 3}>0$
$(0.3 \mathrm{pt}) \quad A_{c}=\left(\frac{a_{\text {sym }}-a_{V}}{a_{\text {grav }}}\right)^{3 / 2}$
- Points for (B.1.3) are given if (B.1.4) is stated although (B.1.3) is not explicitly written.

Part C. Neutron star in a binary system (6.0 points)

C. 1 (total 1.0 pt)

(1.0 pt)
$\Delta \tau_{\mathrm{II}}=\left(1-\frac{\Delta \phi}{c^{2}}\right) \Delta \tau_{\mathrm{I}}$

- No points if the coefficient is wrong.
partial points
$(0.3 \mathrm{pt}) \quad v^{2}=2 g \Delta h=2 \Delta \phi \quad$ or $\quad v=\sqrt{2 \Delta \phi}$
$(0.5 \mathrm{pt}) \quad \Delta \tau_{\mathrm{II}}=\sqrt{1-v^{2} / c^{2}} \Delta \tau_{\mathrm{I}} \quad$ or $\quad \Delta \tau_{\mathrm{II}}=\sqrt{1-2 \frac{\Delta \phi}{c^{2}}} \Delta \tau_{\mathrm{I}}$
- Points for (C.1.1) are given if (C.1.2) is stated although (C.1.1) is not explicitly written.

C. 2 (total 1.8 pt$)$

(1.8 pt)
$\Delta t=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(\frac{4\left|x_{N}\right| x_{E}}{d^{2}}\right)$

- No reduction if 4 is missing in log.
- No reduction if $\left|x_{N}\right|$ is written as $-x_{N}$.
- 0.1 pt is subtracted if the modulus in $\left|x_{N}\right|$ is missing.
- No points if other coefficients are wrong.
partial points
$(0.5 \mathrm{pt}) \quad t_{\mathrm{E}-\mathrm{N}}=\int_{x_{N}}^{x_{E}} \frac{d x}{c_{\text {eff }}(x)} \quad$ or $\quad \Delta t_{\mathrm{E}-\mathrm{N}}=\frac{\Delta x}{c_{\text {eff }}(x)}$
$(0.4 \mathrm{pt}) \quad t_{\mathrm{E}-\mathrm{N}} \simeq \frac{1}{c} \int_{x_{N}}^{x_{E}} d x\left(1+\frac{2 G M_{\mathrm{WD}}}{c^{2} \sqrt{x^{2}+d^{2}}}\right)$
- 0.1 pt is subtracted if the coefficient is wrong.
$(0.3 \mathrm{pt}) \Delta t=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \int_{x_{N}}^{x_{E}} \frac{d x}{\sqrt{x^{2}+d^{2}}}$
(0.3 pt) Inside the logarithm: $\sqrt{x_{N}^{2}+d^{2}}+x_{N} \simeq \frac{d^{2}}{2\left|x_{N}\right|}$ and $\sqrt{x_{E}^{2}+d^{2}}-x_{E} \simeq \frac{d^{2}}{2 x_{E}}$ (C.2.4)

C. 3 (total 1.8 pt)

(1.8 pt)
$\Delta t_{\text {max }}-\Delta t_{\text {min }}=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(4 / \varepsilon^{2}\right)$

- No reduction if log is written as ln.
partial points
$(0.6 \mathrm{pt}) \quad \Delta t_{\max }=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \log \left(4 x_{E} / L \varepsilon^{2}\right)$
- No subtraction points if the factor in log is different but consistent with that in C.2.
- 0.1 pt is subtracted if the coefficient is wrong.
$(0.2 \mathrm{pt})$ Because of $x_{N}>0$ the approx. in log is changed: $x_{N}+\sqrt{x_{N}^{2}+d^{2}} \simeq 2 L$
$(0.4 \mathrm{pt}) \quad \Delta t_{\min }=\frac{2 G M_{\mathrm{WD}}}{c^{3}} \ln \left(x_{E} / L\right)$
- Points for (C.3.2) are given if (C.3.3) is stated although (C.3.2) is not explicitly written.
- 0.1 pt is subtracted if the coefficient is wrong.
(0.3 pt) Points are given if L and x_{E} dependence is canceled in log.
C. 4 (total 0.8 pt$)$
(0.8 pt)
$M_{\mathrm{WD}} / M_{\odot}=0.5$
- No reduction if the value is in the range $0.4-0.5$.
$(0.2 \mathrm{pt}) \quad \varepsilon^{2} \simeq 2 \times(1-0.99989)=0.00022$
$(0.2 \mathrm{pt})$ From the given graph, $\Delta t_{\max }-\Delta t_{\min } \approx 50 \mu \mathrm{~s}$
- No reduction if the value from the graph is in the range $40-50 \mu \mathrm{~s}$.

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad M_{\mathrm{WD}} / M_{\odot} \simeq 5 / \ln \left(4 / \varepsilon^{2}\right) \tag{C.4.3}
\end{equation*}
$$

- No reduction if the numerator is in the range $4-5$.
C. 5 (total 0.4 pt$)$
(0.4 pt)
$p=-\frac{3}{2} \quad$ or $\quad-1.5$
- No points if the sign is wrong.

> partial points
$(0.3 \mathrm{pt}) \quad R^{3} \omega^{2}=($ const. $)$
C. 6 (total 0.2 pt)
(0.2 pt)
The most appropriate profile is (b).

Solution / marking scheme - Water and Objects (10 pt)

General rules

- In the following, "coefficients" refer to the numerical factors and do not include parameters.

Part A. Merger of water drops (2.0 pt)

A. 1 (total 2.0 pt)
(2.0 pt)
$v=0.23 \mathrm{~m} / \mathrm{s}$

- No deduction if the answer falls within the range $0.22 \mathrm{~m} / \mathrm{s} \leq v \leq 0.24 \mathrm{~m} / \mathrm{s}$
partial points
The surface energy per drop before the merger:

$$
\begin{equation*}
(0.4 \mathrm{pt}) \quad E=4 \pi a^{2} \gamma \tag{A.1.1}
\end{equation*}
$$

The surface energy difference:

$$
\begin{equation*}
(0.6 \mathrm{pt}) \quad \Delta E=4 \pi\left(2-2^{2 / 3}\right) a^{2} \gamma \tag{A.1.2}
\end{equation*}
$$

The transfer of surface energy to kinetic energy :

$$
\begin{equation*}
(0.4 \mathrm{pt}) \quad M v^{2} / 2=k \Delta E \tag{A.1.3}
\end{equation*}
$$

where $M=4 \pi a^{3} \rho / 3 \times 2=8 \pi a^{3} \rho / 3$ is the mass of the drop after the merger.

- No partial point will be given if the factor k is missing.

Numerical evaluation:

$$
v=\sqrt{\frac{2 k \Delta E}{M}}=\sqrt{3\left(2-2^{2 / 3}\right) \frac{k \gamma}{\rho a}}=\sqrt{3\left(2-2^{2 / 3}\right) \times \frac{0.06 \times\left(7.27 \times 10^{-2}\right)}{\left(1.0 \times 10^{3}\right) \times\left(100 \times 10^{-6}\right)}}=0.23 \not 2 \mathrm{~m} / \mathrm{s}
$$

Part B. A vertically placed board (4.5 pt)

B. 1 (total 0.6 pt)

Usable letters: ρ, g, z, P_{0}
(0.6 pt)
$P=P_{0}-\rho g z$

- No point will be given for $P=P_{0}+\rho g z$

Commentary
The expression, $P=P_{0}-\rho g z$, holds for both $z<0$ and $z>0$, as long as z is inside the water.
B. 2 (total 0.8 pt)

Usable letters: ρ, g, z_{1}, z_{2}
(0.8 pt)
$f_{x}=\frac{1}{2} \rho g\left(z_{2}^{2}-z_{1}^{2}\right)$

- Give 0.6 pt for $f_{x}=\rho g\left(z_{2}^{2}-z_{1}^{2}\right)$
- Give 0.4 pt for $f_{x}=\frac{1}{2} \rho g\left(z_{1}^{2}-z_{2}^{2}\right)$

Commentary
Because the atmospheric pressure P_{0} exerts no net horizontal force on the water block, we have

$$
f_{x}=\int_{z_{2}}^{z_{1}}(-\rho g z) d z=\frac{1}{2} \rho g\left(z_{2}^{2}-z_{1}^{2}\right)
$$

B. 3 (total 0.8 pt)

Usable letters: $\gamma, \theta_{1}, \theta_{2}$
(0.8 pt)

$$
f_{x}=\gamma \cos \theta_{1}-\gamma \cos \theta_{2}
$$

- Give 0.6 pt for $f_{x}=\gamma \cos \theta_{2}-\gamma \cos \theta_{1}$
- Give 0.4 pt for $f_{x}=\gamma \cos \theta_{2}+\gamma \cos \theta_{1}$ or $f_{x}=-\gamma \cos \theta_{2}-\gamma \cos \theta_{1}$.

B. 4 (total 0.8 pt)

(0.4 pt)

$a=2$

- No point will be given for $a \neq 2$.

Usable letters: γ, ρ
(0.4 pt)
$\ell=\sqrt{\frac{\gamma}{\rho g}}$

- If an unnecessary coefficient is included as a factor, 0.2 pt will be deducted.
B. 5 (total 1.5 pt)

Usable letters: $\tan \theta_{0}, \ell$
(1.5 pt)
$z(x)=-\ell \tan \theta_{0} e^{-x / \ell}$

- Deduct 0.2 pt for $z(x)=-\ell \sin \theta_{0} e^{-x / \ell}$ or $z(x)=-\ell \theta_{0} e^{-x / \ell}$.
partial points
$z^{\prime}=\tan \theta$ leads to

$$
\begin{align*}
& (0.2 \mathrm{pt}) \quad \cos \theta=\frac{1}{\sqrt{1+\left(z^{\prime}\right)^{2}}} \tag{B.5.1}\\
& (0.1 \mathrm{pt}) \quad \cos \theta \simeq 1-\frac{1}{2}\left(z^{\prime}\right)^{2} \tag{B.5.2}
\end{align*}
$$

Plug this into Eq.(1) to obtain,

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad \frac{z^{2}}{\ell^{2}}-z^{\prime 2}=\text { const. } \tag{B.5.3}
\end{equation*}
$$

Take the derivative of both sides with respect to x :

$$
\begin{equation*}
(0.5 \mathrm{pt}) \quad z^{\prime \prime}=\frac{z}{\ell^{2}} \tag{B.5.4}
\end{equation*}
$$

which is the differential equation which determines the water surface form.
General solution:

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad z=A e^{x / \ell}+B e^{-x / \ell} \tag{B.5.5}
\end{equation*}
$$

The boundary condition, $z(\infty)=0$, leads to

$$
\begin{equation*}
(0.1 \mathrm{pt}) \quad A=0 \tag{B.5.6}
\end{equation*}
$$

The boundary condition, $z^{\prime}(0)=\tan \theta_{0}$, leads to

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad B=-\ell \tan \theta_{0} \tag{B.5.7}
\end{equation*}
$$

Part C. Interaction between two rods (3.5 pt)

C. 1 (total 1.0 pt)

Usable letters: $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}, z_{\mathrm{b}}, \rho, g, \gamma$
(1.0 pt)

$$
F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma\left(\cos \theta_{\mathrm{b}}-\cos \theta_{\mathrm{a}}\right)
$$

- Give 0.8 pt for $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma\left(\cos \theta_{\mathrm{a}}-\cos \theta_{\mathrm{b}}\right)$
- Give 0.6 pt for $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)+\gamma \cos \theta_{2}+\gamma \cos \theta_{1}$ or $F_{x}=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)-\gamma \cos \theta_{2}-$ $\gamma \cos \theta_{1}$.
partial points
The holizontal component of the force due to the pressure is
$(0.6 \mathrm{pt}) \quad \int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)$
Commentary
Comment 1: How to apply the experience in B. 1 is as follows. Let z_{bottom} the z-coordinate at the bottom of the rod, then from the discussion in B1, we see

$$
F_{x}=\int_{z_{\text {bottom }}}^{z_{\mathrm{a}}}(-\rho g z) d z+\left(-\int_{z_{\text {bottom }}}^{z_{\mathrm{b}}}(-\rho g z) d z\right)=\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z
$$

Comment 2: The fact that the contribution due to the pressure does not depend on the shape of the cross-section can be demonstrated as follows. The pressure at the point s on the contour C along the cross-sectional boundary is

$$
-P \hat{n} d s=\left(-P_{0}+\rho g\right) \hat{n} d s
$$

Let \hat{x} the unit vector pointing the positive x-direction and noting $\hat{x} \cdot \hat{n} d s=d z$ (see the figure shown below), the holizontal component becoms and its holizontal component becomes

$$
-P \hat{n} \cdot \hat{x} d s=-P_{0} d z+\rho g d z
$$

Integrating along the contour C, we obtain

$$
\oint_{C}(-P \hat{n} \cdot \hat{x} d s)=\int_{z_{\mathrm{a}}}^{z_{\mathrm{b}}}(\rho g z) d z=\frac{1}{2} \rho g\left(z_{\mathrm{b}}^{2}-z_{\mathrm{a}}^{2}\right)
$$

T3-5
C. 2 (total 1.5 pt)

Unusable letters: $\theta_{\mathrm{a}}, \theta_{\mathrm{b}}, z_{\mathrm{a}}, z_{\mathrm{b}}$
(1.5 pt)
$F_{x}=-\frac{1}{2} \rho g z_{0}^{2}$

- Give 1.3 pt for $F_{x}=-\rho g z_{0}^{2}$.
- Give 0.8 pt for $F_{x}=\frac{1}{2} \rho g z_{0}^{2}$.
partial points
Apply the boundary conditions to Eq. (1) to obtain

$$
\begin{equation*}
(0.6 \mathrm{pt}) \underbrace{\frac{1}{2} \rho g z_{\mathrm{a}}^{2}+\gamma \cos \theta_{\mathrm{a}}}_{x=x_{\mathrm{a}}}=\underbrace{\frac{1}{2} \rho g z_{0}^{2}+\gamma}_{x=0} \tag{C.2.1}
\end{equation*}
$$

- Give 0.4 pt for $\rho g z_{\mathrm{a}}^{2}+\gamma \cos \theta_{\mathrm{a}}=\rho g z_{0}^{2}+\gamma$

$$
\begin{equation*}
(0.6 \mathrm{pt}) \underbrace{\frac{1}{2} \rho g z_{\mathrm{b}}^{2}+\gamma \cos \theta_{\mathrm{b}}}_{x=x_{\mathrm{b}}}={\underset{x \rightarrow \infty}{\gamma}}_{\underset{\sim}{x}} \tag{C.2.2}
\end{equation*}
$$

- Give 0.4 pt for $\rho g z_{\mathrm{b}}^{2}+\gamma \cos \theta_{\mathrm{b}}=\rho g z_{0}^{2}$
F_{x} is obtained by subtracting (C2.1) from (C2.2).

C. 3 (total 1.0 pt)

Usable letters: $x_{\mathrm{a}}, z_{\mathrm{a}}$
(1.0 pt)

$$
z_{0}=\frac{2 z_{\mathrm{a}}}{e^{x_{\mathrm{a}} / \ell}+e^{-x_{\mathrm{a}} / \ell}}
$$

- Correct alternative answer: $z_{0}=\frac{z_{\mathrm{a}}}{\cosh \left(x_{\mathrm{a}} / \ell\right)}=z_{\mathrm{a}} \operatorname{sech}\left(x_{\mathrm{a}} / \ell\right)$
partial points
General solution: $z(x)=A e^{x / \ell}+B e^{-x / \ell}$
Taking into account the left-right symmetry, we obtain,

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad A=B \tag{С.3.1}
\end{equation*}
$$

Boundary condition, $z(0)=z_{0}$ leads to

$$
\begin{equation*}
(0.3 \mathrm{pt}) \quad A+B=z_{0} \tag{С.3.2}
\end{equation*}
$$

Find the coefficients:

$$
\begin{equation*}
(0.2 \mathrm{pt}) \quad A=z_{0} / 2 \tag{C.3.3}
\end{equation*}
$$

(0.2 pt) $\quad B=z_{0} / 2$

