

OLIMPÍADA BRASILEIRA DE FÍSICA 2023 Prova da $3^{\underline{a}}$ Fase 21 DE OUTUBRO DE 2023

NÍVEL III Ensino Médio 3^{<u>a</u>} e 4^{<u>a</u>} Séries

LEIA ATENTAMENTE AS INSTRUÇÕES:

- 1. Esta prova destina-se exclusivamente aos alunos da 3ª e 4ª séries do nível médio. Ela contém 8 questões.
- 2. Não é permitido uso de calculadoras e material de consulta.
- 3. Todas as respostas devem ser justificadas.
 - As resoluções e respostas devem ser dadas a tinta com caneta esferográfica azul ou preta (não use caneta de ponta porosa).
 - Use o verso das folhas de questões como rascunho.
- 4. O Caderno de Respostas possui instruções que devem ser lidas cuidadosamente antes do início da prova.
- 5. A menos de instruções específicas contidas no enunciado de uma questão, todos os resultados numéricos devem ser expressos em unidades do Sistema Internacional (SI).
- 6. A duração da prova é de **quatro** horas, devendo o aluno permanecer na sala por **no mínimo sessenta minutos.**
- 7. Se necessário e salvo indicação em contrário, use: $\sqrt{2}=1,4; \sqrt{3}=1,7; \sqrt{5}=2,2;$ sen(30°) = 0,50; cos(30°) = 0,85; sen(45°) = 0,70; $\pi=3$; densidade da água = 1,0 g/cm³; calor específico da água = 4,2 J/g°C; 1 cal = 4,2 J; constante de Coulomb = 9 × 10⁹ N·m²·C⁻²; velocidade do som no ar 340 m/s; e aceleração da gravidade = 10,0 m/s².

Questão 1.

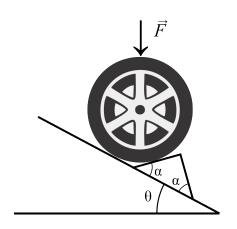
Três bolas de brinquedo, A, B, C, de mesmo raio e massas diferentes são abandonadas, em t=0 s, da janela de um prédio, localizada 20 m acima de um pátio vazio no piso térreo. A tabela ao lado mostra a altura aproximada das bolas em função do tempo t.

As bolas estão sob a ação da força gravitacional (peso) e da força de resistência do ar, ou força de arrasto, \vec{F}_{ar} . Essa força é oposta ao movimento do corpo e sua intensidade é dada por $F_{ar} = bv^2$, onde v é o módulo da velocidade do corpo em relação ao ar e b é uma constante positiva que depende da geometria do corpo e da densidade do ar.

t (s)	y_A (m)	y_B (m)	y_C (m)
0,0	20,00	20,00	20,00
0,2	19,80	19,80	19,80
0,4	19,23	19,21	19,20
0,6	18,34	18,23	18,20
0,8	17,21	16,90	16,80
1,0	15,90	15,23	15,00
1,2	14,47	13,26	12,80
1,4	12,97	11,03	10,20
1,6	11,41	$8,\!56$	7,20
1,8	9,83	5,89	3,80
2,0	8,25	3,04	0,00

A ação de \vec{F}_{ar} pode ser desprezada devido, entre outros, à combinação dos seguintes fatores: (1) velocidade suficientemente baixa e (2) corpo suficientemente massivo.

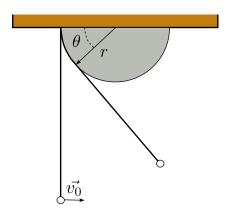
- (a) Todos os corpos em queda no ar, depois de um intervalo de tempo suficientemente longo, se movem com velocidade constante, chamada velocidade terminal. Qual a bola mais leve? Ela já atingiu a velocidade terminal? Quando (aproximadamente)? Qual seu valor?
- (b) A ação de F_{ar} durante toda a queda é desprezível para alguma bola? Qual? Justifique.
- (c) Sejam $m_3 > m_2 > m_1$ as massas das bolas. Estime a razão m_2/m_1 .
- (d) É possível estimar a razão m_3/m_1 ? Por quê?


Questão 2.

Um carro está estacionado em um plano inclinado de ângulo $\theta=30^\circ$. Para se assegurar que não deslize, foram colocados calços sob as rodas, conforme esquema na figura. O calço, que está fixo no plano inclinado, forma ângulo α com ele. Considere uma roda em equilíbrio estático no qual atua uma força \vec{F} de intensidade de 6000 N. Essa força, aplicada no eixo da roda, corresponde à resultante da carga do carro mais o peso da própria roda.

Desconsidere as forças de atrito. Determine N_p e N_c , respectivamente, as intensidades das forças que o plano inclinado e o calço exercem na roda, nos seguintes casos:

(b)
$$\alpha = 60^{\circ}$$



Questão 3.

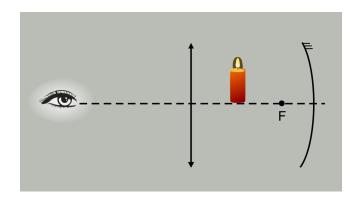
Considere uma bancada horizontal de um laboratório didático na qual foi fixado um semicilindro rígido de raio r. Uma pequena esfera de massa m está conectada ao semicilindro por um fio de massa desprezível e comprimento $L=\pi r$, conforme a figura. Inicialmente, com $\theta=0$, o fio é vertical e tangencia o semicilindro. Determine o menor valor da intensidade da velocidade inicial da esfera, $v_0=|\vec{v_0}|$, para que a esfera atinja a configuração com $\theta=135^\circ$ com o fio tensionado.

Questão 4.

Considere uma máquina térmica que opera ciclicamente extraindo calor de uma fornalha a 1027 °C e um rio que está a 27,0 °C. Um estudante de física faz um protótipo usando um gás ideal monoatômico como o subsistema responsável pelas transferências de energia.

O gás ideal está encerrado na câmara de um cilindro ao qual está acoplado um pistão. Quando o pistão é travado o volume do gás é mantido constante. Quando a trava é removida o gás interage com um agente mecânico externo, trocando energia na forma de trabalho com ele, durante sua expansão ou compressão. As paredes do cilindro são condutoras de calor.

A primeira versão do protótipo opera de acordo com o ciclo de quatro etapas:


- 1 O cilindro com o pistão travado e o gás com volume $V_A = 1,00$ litro, pressão de 10^5 Pa, e temperatura $20,0\,^{\circ}$ C, é inserido na fornalha. Aguarda-se o equilíbrio térmico.
- 2 Com o cilindro na fornalha, remove-se a trava do pistão. O gás se expande, realizando trabalho, até atingir o volume $V_B=2{,}00$ litros.
- 3 O pistão é travado e transfere-se o cilindro da fornalha para o rio. Aguarda-se o equilíbrio térmico.
- 4 Com o cilindro na água, remove-se a trava do pistão. Comprime-se o gás, realizando trabalho sobre ele, até atingir novamente o volume V_A .
- (a) Qual o trabalho realizado (saldo da energia mecânica transferida) pelo gás, por ciclo?
- (b) Qual a eficiência deste protótipo de máquina térmica?
- (c) Qual a máxima eficiência termodinâmica que uma máquina térmica pode ter operando usando a fornalha como fonte quente e o rio como fonte fria?

Questão 5.

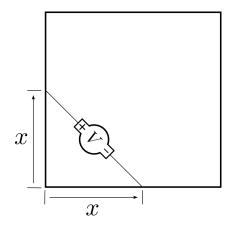
Durante uma experiencia de óptica em um laboratório didático, uma estudante faz a montagem na qual uma vela de 4,00 cm de altura é posicionada entre uma lente convergente e um espelho côncavo, conforme diagrama mostrado na figura. O espelho e a lente têm distâncias focais, respectivamente de 10,0 cm e 30,0 cm. A lente e a vela e a lente são posicionadas, respectivamente, a 15,0 cm e 45,0 cm do espelho.

- (a) Determine a posição e a altura da imagem vista pela estudante.
- (b) Apresente o esquema com os raios de luz que determinam geometricamente a imagem.

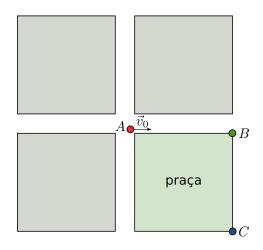
Questão 6.

No início do século XX, principalmente depois da descoberta da equivalência entre massa e energia por Einstein, foram propostos modelos nos quais a massa do elétron era devida apenas à atração eletrostática. Considere que o elétron é formado por três partículas com massas desprezíveis (quando distantes) e cargas iguais a q = -e/3. Dados, aproximadamente, massa do elétron $m = 9.0 \times 10^{-31}$ kg e carga elementar $e = 1.6 \times 10^{-19}$ C, determine:

- (a) A energia W necessária para aproximar as três partículas, inicialmente afastadas, até uma distância d uma da outra.
- (b) Desconsiderando a interação necessária para manter as partículas próximas, qual seria o valor de d segundo esses modelos do início do século XX?
- (c) Qual seria o valor do raio do elétron dessa proposta?



Questão 7.


Uma espira quadrada de aresta a e resistância r está na presença de um campo magnético uniforme \vec{B} de direção perpendicular ao plano da espira, sentido saindo do plano do papel e cuja intensidade B aumenta com a taxa $\dot{B} = \frac{\Delta B}{\Delta t}$ constante ($\dot{B} > 0$). Um voltímetro de resistência interna R é ligado à espira por fios de resistências desprezíveis conforme mostrado na figura. Determine:

- (a) O valor da corrente i que percorre a espira quadrada quando x = a.
- (b) A tensão V no voltímetro em função de x.

Questão 8.

O ponto A da figura ao lado representa uma ambulância que se desloca com velocidade constante de módulo $v_0=120~\mathrm{km/h}$. No instante em que ela começa a atravessar uma praça quadrada, de lados 100 m, sua sirene de 1000 Hz é ligada. Assim que a ambulância cruza a praça, a sirene é desligada. Nos pontos B e C estão situados dois observadores. Desconsidere a largura das ruas e suponha que o som da sirene se propaga isotropicamente.

- (a) Determine, para cada observador $(B \in C)$, a maior e menor frequência sonora com que ouvem o som da sirene.
- (b) Sejam f_B e f_C as frequências da ambulância percebidas por B e C. No mesmo plano cartesiano, faça gráficos de f_B e f_C em função do tempo t. Use o eixo horizontal para t. Adote t = 0 como o instante em que a ambulância liga as sirenes.