

Comentário NOIC Prova experimental da 3ª Fase - Nível I 15 DE FEVEREIRO DE 2023

Escrito por Akira Ito, Lucas Tavares, Vitória Bezerra Nunes, Ualype Uchôa, e Matheus Borges

Questão 1. Seguindo as instruções contidas no procedimento experimental, coletamos as medidas na tabela abaixo.

Tabela 1: Medidas do número máximo de clipes em função do número de cartões

i	$N_{C,max}$	N_S
1	3	10
2	4	9
3	6	8
4	8	7
1 2 3 4 5 6 7 8	12	6
6	17	5
7	26	$6 \\ 5 \\ 4 \\ 3 \\ 2$
8	36	3
9	57	2
10	98	1

Questão 2.

(a) Primeiramente, devemos fazer um breve comentário acerca da medição de l. Note que foram fornecidas quatro medições para a espessura dos cartões. Sendo assim, a nossa melhor estimativa será tomar a média aritmética das medidas fornecidas. Sendo elas l_1 , l_2 , l_3 , e l_4 , a nossa estimativa para l corresponde a:

$$l = \bar{l} = \frac{\sum_{i=1}^{4} l_i}{4} = \frac{7,62 + 7,58 + 7,59 + 7,64}{4} \text{ mm} = 7,608 \text{ mm}$$

Agora, devemos calcular a sua incerteza σ_l . Com ela, saberemos a quantidade de casas decimais necessárias ao escrever l. Como o paquímetro é um instrumento de medida analógico, deve-se adotar sua incerteza como a metade de sua precisão, i.e., a metade da menor medida de sua escala. O enunciado diz que a menor medida do paquímetro é 0,02 mm, portanto, a incerteza de medição associada ao paquímetro é de 0,01 mm. Veja que essa é a incerteza associada à cada uma das medições l_i . Para obtermos a incerteza do valor médio l, devemos utilizar a seguinte expressão:

$$\sigma_l = \sqrt{\sigma_{inst}^2 + \sigma_{est}^2}$$

Isto é, devemos realizar a soma em quadratura das incertezas associadas ao erro estatístico (σ_{est}) e instrumental (σ_{inst}) das medidas. A incerteza instrumental é o próprio $\sigma_{l_i}=0,01$ mm. A incerteza estatística corresponde ao desvio padrão da média $S_{\overline{x}}$:

$$\sigma_{est} = S_{\overline{x}} = \frac{S_x}{\sqrt{N}}$$

Sendo $S_{\overline{x}}$ definido como o desvio padrão do conjunto de medidas, e N o número de medidas. Do anexo experimental da OBF, a expressão de S_x é dada por:

$$S_x^2 = \frac{1}{(N-1)} \sum_{i=1}^{N} (x_i - \overline{x})^2$$

$$S_x = 0,028 \text{ mm} \implies S_{\overline{x}} = 0,014 \text{ mm}$$

Logo,

$$\sigma_l = \sqrt{0.01^2 + 0.014^2} = 0.017 \text{ mm}$$

Assim sendo:

$$l = (0,7608 \pm 0,0017) \text{ mm}$$

(b) Começamos calculando a incerteza σ_{m_1} associada à m_1 , em que m_1 é a massa de um único clipe. Como nos fora fornecido a massa $m_{100} = (118 \pm 2)$ g de 100 clipes, temos:

$$m_1 = \frac{m_{100}}{100}$$

Logo,

$$\sigma_{m_1} = \frac{\sigma_{m_{100}}}{100} = 0,020 \text{ g}$$

Assim:

$$m_1 = (1, 180 \pm 0, 020) \text{ g}$$

Logo, para calcular o peso p de um clipe:

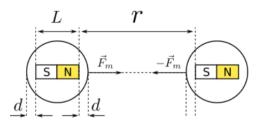
$$p = m_1 g$$

$$\sigma_p = \sigma_{m_1} g = 0,20 \text{ N}$$

Em que usamos $g=9,8~\mathrm{m/s^2}$ da capa da prova. Por fim:

$$p_1 = (11, 56 \pm 0, 20) \times 10^{-3} \text{ N}$$

(c) Veja a figura a seguir, fornecida no início da prova:



Daí, vemos que a distância r será dada por:

$$r = N_S l + 2d$$

Como fora considerado no enunciado que a espessura l de um cartão é congruente à distância d:

$$r = (2 + N_S)l = 0,7608(2 + N_S) \text{ mm}$$

Além disso, a incerteza de r será:

$$\sigma_r = (2 + N_S)\sigma_l = 1,7(2 + N_S) \times 10^{-3} \text{ mm}$$

(d) Pelo enunciado da prova, a força F_m é dada por:

$$F_m = P + F_C + N$$

Quando os clipes estão na iminência de cair, N=0:

$$F_m = P + F_C$$

$$F_m = \left(N_{C,max} + \frac{1}{2}\right)p$$

$$F_m = 11,56 \left(N_{C,max} + \frac{1}{2} \right) \times 10^{-3} \text{ N}$$

OBS.: Pode-se haver a interpretação de que a questão queira que F_m esteja em função de r, uma vez que foi requisitado $F_m(r)$. No entanto, é necessário que o aluno encontre uma relação entre N_c e N_s , visto que r depende de N_s . Entretanto, essa relação se trata de uma lei de potência não trivial de ser encontrada sem acesso a métodos computacionais ou matemáticos avançados de interpolação de funções. Por serem métodos inviáveis de serem realizados durante a prova, por questões de acesso e nível acadêmico, obtivemos F_m em função de $N_{C,max}$.

(e) Teremos que:

$$\sigma_F = \sigma_{F_m} = \sigma \left[\left(N_{C,max} + \frac{1}{2} \right) p \right]$$

Como em uma medida $N_{C,max} + \frac{1}{2}$ não possui incerteza, teremos que:

$$\sigma_F = \left(N_{C,max} + \frac{1}{2}\right)\sigma_p = 0, 20\left(N_{C,max} + \frac{1}{2}\right) \text{ N}$$

(f)

Tabela 2: Dados da distância entre os ímãs (r) e a força magnética (F_m) com seus respectivos erros.

i	$r \times 10^{-4} \; (\text{m})$	$\sigma_r \times 10^{-4} \; (\text{m})$	$F_m \times 10^{-2} \; (N)$	$\sigma_F \times 10^{-2} (N)$
1	91,30	0,06	4,05	0,07
2	83,69	0,06	5,20	0,09
3	76,08	0,05	7,52	0,13
4	68,47	0,05	9,83	0,17
5	60,86	0,04	14,46	0,25
6	$53,\!26$	0,04	20,2	0,3
7	$45,\!65$	0,03	30,6	0,5
8	38,04	0,03	42,2	0,7
9	30,432	0,020	66,5	1,1
10	22,824	0,015	113,9	2,0

Questão 3. A função dada pela equação 1 da prova é:

$$F_m(r) = A\left(\frac{L}{r}\right)^{\alpha}$$

Como a função logarítmica é a inversa da exponencial, aplicamos o logaritmo de base 10 ($\log_{10} \equiv \log$) nos dois lados da equação 1 a fim de linearizá-la. Veja:

$$\log\left(F_m\right) = \log\left[A\left(\frac{L}{r}\right)^{\alpha}\right]$$

Usando as propriedades do log:

$$\log\left(F_{m}\right) = \log\left(A\right) + \alpha\log\left(\frac{L}{r}\right)$$

$$\log(F_m) = \log(AL^{\alpha}) - \alpha\log(r)$$

Na equação de uma reta:

$$Y = a + bX$$

Em que a é o coeficiente linear e b é o coeficiente angular da reta. Analisando as duas equações acima, podemos fazer a correspondência:

$$\log(F_m) \to Y$$
 $\log(r) \to X$

$$-\alpha \to b$$
 $\log(AL^{\alpha}) \to a$

Agora, devemos propagar a incerteza σ_F associada ao cálculo de $\log{(F_m)}$. Para uma grandeza do tipo $w = b \log_a{(x)}$, a incerteza σ_w associada será:

$$\sigma_w = \left| \frac{b}{\ln\left(a\right)} \right| \frac{\sigma_x}{x}$$

Logo:

$$\sigma_{\log F} = \frac{1}{\ln{(10)}} \frac{\sigma_F}{F_m}$$

Em que $\ln(10)$ é o logaritmo natural (na base e) de 10.

Montando a tabela linearizada com os logaritmos, temos:

Tabela 3: Logaritmos de r e F_m na base 10 com os respectivos erros.

i	$\log (r/1 \text{ m})$	$\sigma_{\log{(r)}}$	$\log (F_m/1 \text{ N})$	$\sigma_{\log{(F_m)}}$
1	-2,03953	0,00029	-3,393	0,008
2	-2,0773	0,0003	-3,284	0,008
3	-2,11873	0,00029	-3,124	0,008
4	-2,1645	0,0003	-3,007	0,008
5	-2,21567	0,00029	-2,840	0,008
6	-2,2736	0,0003	-2,695	0,006
7	-2,34056	0,00029	-2,514	0,007
8	-2,4198	0,0003	-2,375	0,007
9	-2,51667	0,00029	-2,177	0,007
10	-2,64161	0,00029	-1,943	0,008

Questão 4. Com os dados da tabela 2, montamos o seguinte gráfico:

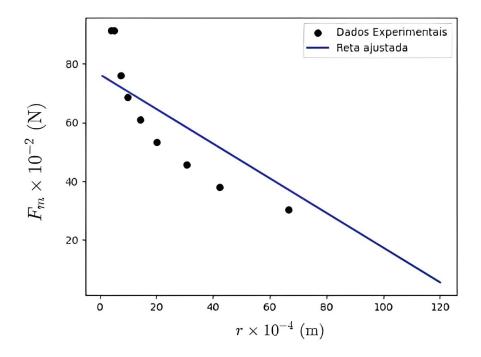


Gráfico 1: Força versus distância com a reta de melhor ajuste aos pontos **OBS:** As barras de erro são desprezíveis em relação à escala adotada.

Vale ressaltar que o aluno poderia esboçar a reta de ajuste visualmente (informalmente conhecido como "no olho") sem problemas, já que os valores dos coeficientes angular e linear da reta não serão necessários—tampouco teriam algum sentido físico. Note ainda que a reta não se encaixa nada bem ao comportamento dos pontos, o que faz total sentido já que o comportamento dos pontos é claramente não linear. Provavelmente a prova requisitou que o aluno traçasse a reta justamente para verificar que o ajuste não seria razoável, além de realizar um contraponto entre os papéis dilog e milimetrado—como veremos na questão a seguir, o mesmo gráfico em papel dilog apresentará uma tendência linear dos pontos, aos quais poderemos satisfatoriamente ajustar uma reta.

OBS.: É interessante mencionar que, apesar de não requisitado pelo comando da questão, o mais adequado nesse caso-fisicamente falando-seria traçar uma curva de melhor ajuste em vez de uma reta, conforme ilustra o gráfico a seguir.

Questão 5. Com os dados da tabela 3, montamos o seguinte gráfico:

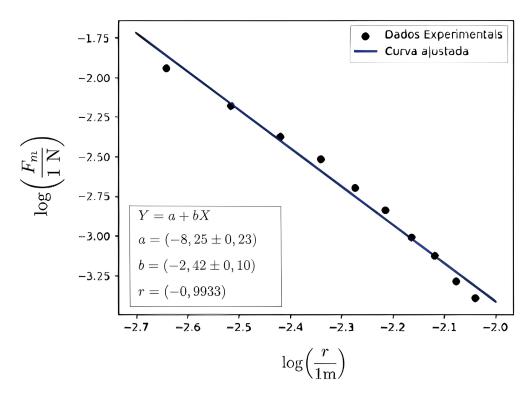


Gráfico 2: Força versus distância com as grandezas linearizadas

OBS: As barras de erro são desprezíveis em relação à escala adotada.

Questão 6. Com os dados da tabela 2, contruímos o gráfico dilog:

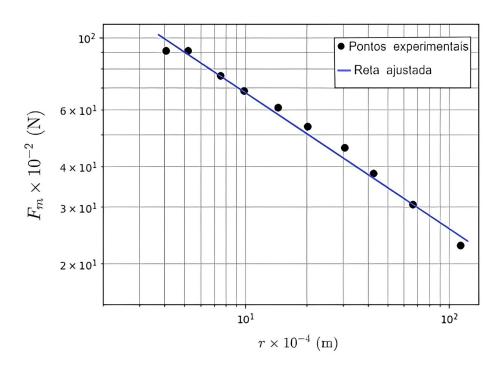


Gráfico 3: Força versus distância no gráfico dilog

 $\mathbf{OBS:}$ As barras de erro são desprezíveis em relação à escala adotada.

Questão 7.

(a) Como visto anteriormente na questão 3, temos que a equação linearizada

$$\log(F_m) = \log(AL^{\alpha}) - \alpha\log(r)$$

é análoga à

$$Y = a + bX$$

tal que

$$\log\left(F_{m}\right) \to Y \qquad \qquad \log\left(r\right) \to X$$

$$-\alpha \to b$$
 $\log(AL^{\alpha}) \to a$

Então o valor de α e sua incerteza são calculados por

$$\alpha = -b \qquad \qquad \sigma_{\alpha} = \sigma_b$$

Para encontrar o valor de b e sua incerteza utiliza-se o método da regressão linear, tal que

$$b = -2,42$$

E sua incerteza é calculada por

$$\sigma_b = \left| b \sqrt{\frac{\frac{1}{r^2} - 1}{N - 2}} \right| \qquad r = -0,9933$$

$$\sigma_b = 0, 10$$

Logo, podemos concluir que:

$$\alpha=2,42\pm0,10$$

(b) Para calcular o diâmetro D da esfera, basta empilhar os cartões até que a pilha de cartões possua a mesma altura da esfera. Desse modo, encontramos que D = 6l. Para a incerteza:

$$\sigma_D = 6\sigma_l$$

Portanto:

$$D = 6(l \pm \sigma_l)$$

$$D = (4,565 \pm 0,010) \text{ mm}$$

(c) Como é dito na prova:

$$D = L + 2d$$

$$L = 4(l \pm \sigma_l)$$

$$L = (3,0432 \pm 0,0020) \text{ mm}$$

(d) Como visto anteriormente na questão 3:

$$\log\left(AL^{\alpha}\right) = a$$

O valor de a e sua incerteza pode ser calculado pelo método da regressão linear, tal que

$$a = -8, 25$$

E sua incerteza é calculada por

$$\sigma_a = \sigma_a \sqrt{\frac{\sum X_i^2}{N}}$$

$$\sigma_a = 0, 23$$

Logo, podemos concluir que:

$$A = L^{-\alpha} \times 10^a$$

Para medidas da forma $w = x^p y^q$ calcula-se a incerteza de w da seguinte forma:

$$\left(\frac{\sigma_w}{w}\right)^2 = \left(p\frac{\sigma_x}{x}\right)^2 + \left(q\frac{\sigma_y}{y}\right)^2$$

Então para a incerteza de A, temos:

$$\sigma_A = \sqrt{\left(\frac{\alpha\sigma_L\times 10^a}{L^{\alpha+1}}\right)^2 + \left(\frac{10^a\sigma_a}{L^{\alpha}}\right)^2}$$

Sendo assim, teremos que:

$$A = (6, 8 \pm 1, 6) \times 10^{-3} \text{ (SI)}$$

Questão 8.

(a) A equação dada pelo enunciado é:

$$F_m = \lambda \left[\frac{\pi B_0^2 (L^2 + R^2)}{\mu_o} \left(\frac{R}{L} \right)^4 \right] \left(\frac{L}{r} \right)^{\alpha}$$

Porém, a lei de potência obtida experimentalmente é:

$$F_m = A \left(\frac{L}{r}\right)^{\alpha}$$

Comparando as duas equações, temos:

$$A = \lambda \left[\frac{\pi B_0^2 (L^2 + R^2)}{\mu_o} \left(\frac{R}{L} \right)^4 \right]$$

Daí:

$$B_0 = \sqrt{\frac{A\mu_0}{\lambda\pi(L^2 + R^2)} \left(\frac{L}{R}\right)^4}$$

Podemos calcular a incerteza de uma função $w(x,y,z,\ldots)$ da seguinte forma:

$$\sigma_w = w\sqrt{\left(\frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_y}{y}\right)^2 + \left(\frac{\sigma_z}{z}\right)^2 + \cdots}$$

Dessa forma, utilizando $A \to x$; $L^4 \to y$ e $(L^2 + R^2) \to z$. Logo, para a incerteza de B_0 :

$$\sigma_{B_0} = B_0 \sqrt{\left(\frac{\sigma_{L^4}}{L^4}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{\sigma_{(L^2 + R^2)}}{L^2 + R^2}\right)^2}$$

$$\sigma_{B_0} = B_0 \sqrt{\left(rac{\sigma_A}{A}
ight)^2 + \left(rac{4L^3\sigma_L}{L^4}
ight)^2 + \left(rac{2L\sigma_L}{L^2 + R^2}
ight)^2}$$

Substituindo o valor de B_0 :

$$\sigma_{B_0} = \sqrt{\frac{A\mu_0}{\lambda\pi(L^2 + R^2)} \left(\frac{L}{R}\right)^4} \sqrt{\left(\frac{\sigma_A}{A}\right)^2 + \left(\frac{4\sigma_L}{L}\right)^2 + \left(\frac{2L\sigma_L}{L^2 + R^2}\right)^2}$$

Substituindo os valores, obtemos:

$$B_0 = (7, 9 \pm 2, 3) \times 10^{-2} \text{ T}$$

(b) A lei de potência dada pela prova é:

$$F_m = A\left(\frac{L}{r}\right)^{\alpha}$$

Substituindo os valores obtidos experimentalmente:

$$F_m = 6.8 \times 10^{-3} \left(\frac{3,0432}{r}\right)^{2,42} \text{ N}$$

(c) Podemos fazer uma comparação da lei de potência obtida experimentalmente com a força gravitacional. Veja:

$$F_g = \frac{GMm}{r^2} \approx \frac{9.3 \times 10^{-17}}{r^2} \text{ m}^2 \text{N}$$

$$F_m = A \left(\frac{L}{r}\right)^{2,42} \approx 5,5 \times 10^{-9} \left(\frac{1 \text{ m}}{r}\right)^{2,42} \text{ N}$$

Em que F_g é a força gravitacional. Além do fato de ambas as forças serem atrativas, podemos perceber que a intensidade de ambas as forças diminui com fatores parecidos, $r^{-2,42}$ para a lei de potência e r^{-2} para a força gravitacional. Perceba ainda que a maior diferença entre ambas as forças é a ordem de grandeza, visto que, para uma mesma distância $F_m \gg F_g$.