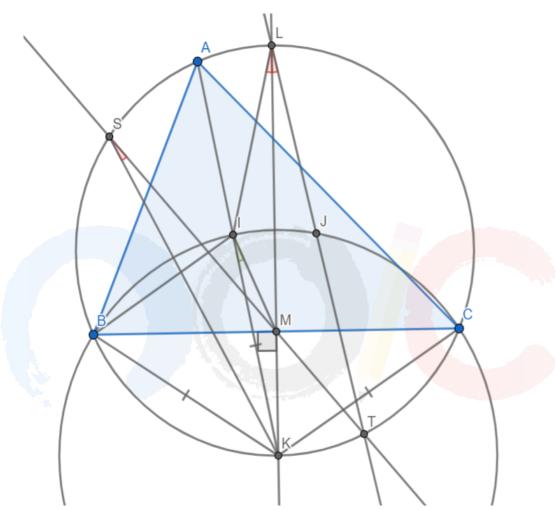


OBM 2023 N2 P3

Levi Castello



Perceba que o quadrilátero (SIMK) é cíclico $\iff \angle MIK = \angle MSK$, mas $\angle MSK = \angle TSK = \angle TLK = \angle JLK = \angle ILK$, essa última é verdade pois J é o reflexo de I pela reta LK!

Assim , o quadrilátero (SIMK) é cíclico $\iff \angle MIK = \angle ILK$, para isso , vamos provar antes o seguinte lema:

Lema 1. IK = BK

Prova:

Perceba que $\angle IAB = \frac{\hat{A}}{2}$ e $\angle IBA = \frac{\hat{B}}{2} \implies \angle BIK = \frac{\hat{A}+\hat{B}}{2}$ e perceba que como $\angle IBC = \frac{\hat{B}}{2}$ e $\angle CBK = \angle CAK = \frac{\hat{A}}{2} \implies \angle IBK = \frac{\hat{A}+\hat{B}}{2}$, assim $\angle BIK = \angle IBK \implies IK = BK$ provando nosso lema!

Finalmente , como $\angle LBK = 90^\circ$ e $\angle KMB = 90^\circ$, por relações métricas no triângulo retângulo ΔLBK temos que $KB^2 = MK \cdot KL$, pelo Lema 1 , $KB = KI \implies KI^2 = MK \cdot ML \implies KI$ é tangente a $(MIL) \implies \angle MIK = \angle ILK \implies (SIMK)$ cíclico e assim terminamos!

OBS: para os leitores interessados em inversão , também podemos provar que $\angle MIK = \angle ILK$ utilizando uma inversão pelo círculo (BIC)!

