
1 Oscillating rope
A) It is evident from the figure that the curvature of the rope
in the fundamental vibration is very small. It infers for a
possibility to model the fundamental vibration as a swinging
of a rigid uniform rod of length L about a pivot point at its
end. The moment of inertia of the rod is:

I = mL2/3

and the distance from the center-of-mass to the pivot point
is:

b = L/2

Therefore, the frequency of the fundamental vibration is ap-
proximated as:

f1 =
1

2π

√
mgb/I =

1

2π

√
3g/2L ≈ 0.61 Hz

Correspondingly, the period of the fundamental vibration is:

T1 = 2π
√
I/mgb = 2π

√
2L/3g ≈ 1.6 s

B) Whatever model for estimating of f1 is being used, one
may deduce on the basis of dimensionality arguments that
the k-th natural frequency of the rope is:

fk = ck
√
g/L

where ck is a dimensionless numeric coefficient depending on
the consecutive mode number k only. Let A and B be the
suspension point and the free end of the rope respectively, and
N be the node on the rope for the second natural vibration
(see the figure).

Since the node point is at rest (in the small-amplitude ap-
proximation), the vibration of the part NB could be con-
sidered as a fundamental vibration of a rope of length LNA
about a suspension point N . Therefore:

f2(L) ≡ f1(L−NA)

Hence one may write:

f2(L)

f1(L)
=

f1(L−NA)

f1(L)
=

√
L

L−NA

Since the absolute displacement is much smaller than the
length of the rope, the distances could be measured in a ver-
tical direction, to the ceiling, instead along the rope. There-
fore, by taking L = 1 m, and NA ≈ 0.8 m, we obtain:

f2
f1

≈ 2.2

Similarly, the vibration of the part N1B in the third eigen-
mode is equivalent to the second natural vibration of a rope
of length L−N1A ≈ 0.4 m. In analogy to the first case:

f3(L) ≡ f2(L−N1A)

and
f2(L)

f1(L)
=

f2(L−N1A)

f2(L)
=

√
L

L−N1A
≈ 1.6

Therefore:
f3/f1 = f2/f1 × f3/f2 ≈ 3.5

Finally:
f1 : f2 : f3 ≈ 1 : 2.2 : 3.5

2 Disk in gas
The initial pressure on the thermal insulating layer is P0 =
nkBT0, where n is number density of the gas. It originates
from multiplying the flux j0 ∝ vx0 and momentum that one
molecule transfers p0 = 2mvx0 (elastic collision), where vx0 is
the normal component of molecule’s velocity, and taking the
average (2v2x0 ∝ T0). When applying the same idea to the
surface with good thermal contact, we find out that the flux
remains the same, although the momentum increases:

p1 = m(vx0 + vx1) ≈ mvx1,

where vx1 is the normal velocity component of the molecule
flying away from the disk. Thus for pressure P1:

P1

P0
=

vx0vx1

2v2x0
≈

√
T1T0

T0
,

which is correct to some numerical coefficient of the order of
one.

The net force acting on the disk:

F = (P1 − P0)S ≈ SnkB
√
T0T1,

and then the initial acceleration:

a0 ≈ SnkB
M

√
T0T1 =

SρkB
mM

√
T0T1.



Since P1 ≫ P0, the disk will accelerate until its speed be-
comes of the order of average gas molecules speed. After the
velocity v of the disc becomes on the order of v0 =

√
kT0/m,

the flux of molecules reaching the backside j(v) decays faster
than exponentially due to the nature of the molecular velocity
distribution in the ideal gas (for example, j(2v0) ≈ 10−3j0
and j(3v0) ≈ 10−6j0). That leads to a proportional decrease
in a propelling pressure P1. In order to compensate for an
initial bias

√
T1/T0 ≈ 30, it will take around a factor of one

on the velocity of the disk. Therefore the maximum velocity
of the disk:

vmax ≈ v0 =

√
kBT0

m
.

Here we assumed that the disk will not cool close to T0

before it reaches the maximum velocity. Let us show it. The
acceleration time is approximately:

ta ≈ vmax

a0
≈ M

√
mkBT0

SρkB
√
T0T1

=
M

ρS

/√
kBT1

m

Since the power of heat removal Pth is maximal at the be-
ginning (at zero velocity), we can upper-bound estimate the
time for the disk to cool as tc = Q/Pth, where Q is the total
heat of the disk. The initial thermal power of heat removal
can be estimated as:

Pth ≈ Sj0 × kBT1 ≈ SnkB
√

T0T1

√
kBT1

m

and the total heat Q ≈ NkBT1. Given M ≈ Nm, we obtain:

tc ≈
(M/m)kBT1

SnkBT1

√
kBT0/m

=
M

ρS

/√
kBT0

m

Finally, ta/tc ≈
√
T0/T1 ≪ 1, and indeed disk will not cool

significantly before it reaches the velocity about v0.

Grading scheme. Indented lines show partial points for
partially correct solutions

Initial acceleration (5 pts)

P0 = nkT = j0 ×∆p0, ∆p0 = 2mvx0 . . . . . . . . . . . . . . . . . . 2 pts
P ∝ kT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1pts

∆p1 = mvx1, P1 ≈ nk
√
T0T1 . . . . . . . . . . . . . . . . . . . . . . . . . . 2 pts

P1 = nkT1, no points for a0 further . . . . . . . . . . . 1pts
only ∆p1 = mvx1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1pts

Answer for a0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 pts
if some slight mistake . . . . . . . . . . . . . . . . . . . . . . . 0.5pts

Special rule
if ⟨vx0⟩ =

√
3kBT/m (student doesn’t understand

the difference between velocity of the molecule and
the component of the velocity) . . . . . . . . . . . . −0.5pts

Maximal velocity (4 pts)

P1 and P0 depend on the velocity of the disk, P1 drops signi-
ficantly if v ≈ v0, thus vmax ≈ v0 . . . . . . . . . . . . . . . . . . . . . . 4 pts

P ′
0 ≈ ρv2, but P1 stays the same, thus vmax ≈

v0
√

T1/T0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2pts
Student understands that at least some pressure de-
pends on the velocity of the disk . . . . . . . . . . . . . .1pts
The velocity is maximal when disk cools to T0 0pts

Justification of slow cooling (1 pts)

Estimation of times ta and tc given. . . . . . . . . . . . . . . . . . . .1 pts
Student explicitly writes that T ′

1 ≈ T1 but doesn’t
prove it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0.5pts

3 Superconducting mesh
The most important physics to consider is that the magnetic
flux through the superconducting mesh is effectively locally
locked in place. Consider this effect before anything else.
Once the mesh is cooled to the superconducting state the
magnetic field as a function of position on the mesh can-
not be varied, regardless of the change in location of the di-
pole. Since the magnetic field is effectively specified along
this superconducting plane, the problem reduces to a bound-
ary value problem that is traditionally solved by the method
of images.

First, consider what happens if the physical dipole is moved
far away from the mesh. An image dipole must be located
that fixes the magnetic field to be unchanged. This can be
done with an image dipole that is located a distance a behind
the mesh, and it must have the same orientation m. Now
bring back the original dipole, placing it a distance b. It is
necessary to cancel out the field from this original, but now
displaced, dipole with an opposite dipole −m placed behind
the mesh at a distance b.

Double check your work. If the original dipole is placed
at the original location a, then there is no need for image
charges, and they should cancel out. Indeed, the two image
dipoles will, as they have opposite orientations.

The force between the dipole and the image charges must
be determined. Though it might be possible to write down
these answers quickly, the derivation is shown below.

Consider first that a magnetic dipole moment m can be
thought of as a pair of magnetic monopoles of strength qm and
−qm separated by a distance d such that m = qmd. Determine
the magnetic field strength a distance x ≫ d away from the
dipole:

B =
µ0

4π

qm
x2

+
µ0

4π

−qm
(x+ d)2

.

It should be clear that qm is at the origin and −qm is a dis-
tance d farther away from the reference point x where the
field B is being determined. This expression is exact.

The second term can be subjected to a binomial expansion
and then

B ≈ µ0

4π

qm
x2

− µ0

4π

qm
x2

(
1− 2

d

x

)
=

µ0

2π

qmd

x3
=

µ0

2π

m

x3

Now consider the magnetic force on a dipole at the location
x in a non-uniform field B, which is given by

F = −qmB(x) + qmB(x+ d)

which can be approximated by a Taylor expansion of B,

F ≈ −qmB(x) + qm

(
B(x) + d

dB

dx

∣∣∣∣
x

)
= qmd

(
−3µ0

2π

m

x4

)
= −3µ0

2π

m2

x4

The negative sign means that two parallel identical dipoles
separated by a distance x will attract.

Returning to the problem, the physical dipole at b will be
attracted to the image dipole at location −a and repelled
from the image dipole at −b, so

F = −3µ0

2π

m2

(b+ a)4
+
3µ0

2π

m2

(b+ b)4
=

3µ0m
2

2π

(
1

16b4
− 1

(a+ b)4

)
,

where a negative sign means that the physical dipole feels
attraction toward the mesh.



It is entertaining to consider what happens if b is almost
the same as a, say b = a+ δ. In this case,

F =
3µ0m

2

2π

(
1

16(a+ δ)4
− 1

(2a+ δ)4

)
,

or
F ≈ 3µ0m

2

2π

1

16a4

((
1− 4

δ

a

)
−
(
1− 4

δ/2

a

))
,

which simplifies further into

F ≈ −3µ0m
2

16πa5
δ.

Now to interpret. A negative force here is a force of attraction
toward the mesh. A positive δ is moving the physics dipole
away from the mesh. As such, the force is a linear restoring
force, and slight disturbances to the physical dipole will result
in simple harmonic oscillations about the original position.

Grading scheme

1.5 Recognition of nature of problem

– Recognize flux trapping in superconductor (1.0 pt)
– Recognize that flux trapping creates a boundary

value problem (0.5 pt)

4.0 Recognize that the boundary value problem requires two
image dipoles

– First image dipole to create original B field on mesh
(0.5 pt)

– Correct location of first image dipole (0.5 pt)
– Correct magnitude of first image dipole (0.5 pt)
– Correct orientation of first image dipole (0.5 pt)
– Second image dipole to cancel new B field on mesh

(0.5 pt)
– Correct location of second image dipole (0.5 pt)
– Correct magnitude of first image dipole (0.5 pt)
– Correct orientation of first image dipole (0.5 pt)

2.0 Determine the force between two dipoles

– Determine B field a distance from a dipole (1 pt)
– Determine force on a dipole in a non-uniform B field

(1 pt)

2.5 Determine the force between the physical dipole and the
mesh

– Correct magnitude and direction of force from im-
age dipole one (1 pt)

– Correct magnitude and direction of force from im-
age dipole two (1 pt)

– Correct magnitude and direction of force (0.5 pt)

Some notes:

• Dimensionally correct expression with no shown work
but have wrong prefactor get zero marks

• Dimensionally correct expression that show work but
have wrong prefactor caused from clear trivial math mis-
take get 1/2 marks.

• Dimensionally correct expression that whow work but
have wrong prefactor caused from serious math mistake
or any physics mistake get zero marks.

• Dimensionally incorrect expression with no shown work
get zero marks

• Dimensionally incorrect answers that show work get zero
marks

• Follow on errors that use dimensionally correct, but
wrong, derived inputs are not penalized further.

• Follow on errors that use dimensionally incorrect derived
inputs are penalized half marks each time the input is
used.

• Writing a formula incorrectly without showing the deriv-
ation and using it as an input is not considered a follow
on error, but is instead a non-trivial error with a result
of zero marks for that part.

• Ambiguous locations, magnitudes, or orientations receive
zero marks.

• Correctly identifying the locations, magnitudes, or ori-
entations of both of the two image dipoles without clearly
specifying why will receive full 1.5 points for recognizing
the nature of the problem.

• Correctly identifying the locations, magnitudes, or ori-
entations of only one of the image dipoles without clearly
specifying why will receive 0.5 points for recognizing the
nature of the problem.



1 Light-emitting diode
Task 1. The easiest way to obtain V (T )-graph is to use the
diode function of the multimeter for measuring diode voltage
V . The board is heated by driving through the resistor R1 a
current which is adjusted using the potentiometer.
V (V) RT (kΩ) T (K) V (V) RT (kΩ) T (K)
1.560 9.25 300.0 1.560 9.25 300.0
1.555 8.18 302.8 1.555 8.08 303.1
1.550 7.2 305.8 1.550 7.13 306.0
1.545 6.33 308.9 1.545 6.33 308.9
1.540 5.6 311.9 1.540 5.56 312.0
1.535 5.02 314.6 1.535 4.94 315.0
1.530 4.44 317.7 1.530 4.4 317.9
1.525 3.97 320.6 1.525 3.93 320.9
1.520 3.55 323.6 1.520 3.52 323.8
1.515 3.18 326.6 1.515 3.13 327.0
1.510 2.8 330.1 1.510 2.82 329.9
1.505 2.55 332.7 1.505 2.55 332.7
1.500 2.32 335.4 1.500 2.27 336.0
1.495 2.09 338.4 1.495 2.07 338.7
1.490 1.88 341.5 1.490 1.888 341.4
1.485 1.72 344.1 1.485 1.7 344.5
1.480 1.56 347.1 1.480 1.546 347.4
1.475 1.42 350.0 1.475 1.407 350.3
1.470 1.29 353.0 1.470 1.285 353.1
1.465 1.19 355.5 1.465 1.175 355.9
1.460 1.085 358.5 1.460 1.083 358.5
1.455 0.992 361.4 1.455 0.987 361.5
1.450 0.911 364.1 1.450 0.909 364.2

Once we estimate the magnitude of the terms in the expres-
sion for Id, we’ll find that VT ≈ 25mV for T ≈ 300K; all the
voltages are much larger than that, so the unity can be neg-
lected. Then, with constant Id, we have V−VG0

nVT
= const (the

constant appears to be negative), hence V = VG0 − BnVT =
BnkT/q, where B is a constant. So, we need to plot V versus
T , and VG0 is found as the intersection point of the linear
regression line with the vertical axis.

From the linear regression we obtain vG0 ≈ 2.085V.
Next we can make a series of measurements with small

currents so that the diode will have essentially the room tem-
perature. Then we can take logarithm from the expression of
Id (while neglecting the unity) to obtain

V − VG0

VT
= n lnA− n ln Id.

Thus, if we plot ln Id versus V −VG0, n and A can be obtained
as the linear regression parameters.

Alternatively, we can make a series of measurements with
a fixed voltage applied to the diode, and measure current
for different temperatures. Based on the same expression as
given above, we need to plot V−VG0

VT
= (V−VG0)q

kT versus ln Id .
Such data are given in the table below.

I (mA) RT (kΩ) T (K) ln(I/1A) (V−VG0)q
kT

33.3 9.76 298.8 -10.310 -22.25
44.8 5.51 312.3 -10.013 -21.29
96.6 7.12 306.1 -9.245 -21.72
150.0 4.72 316.1 -8.805 -21.03
194.1 3.6 323.2 -8.547 -20.57
297.0 2.53 332.9 -8.122 -19.97
417.0 1.84 342.1 -7.782 -19.43
551.0 1.36 351.3 -7.504 -18.92
840.0 1.002 361.0 -7.082 -18.41
860.0 0.95 362.8 -7.059 -18.33

If we plot these data we’ll see that most of the data points
lie on a straight line, but first two and the very last one will
deviate. Data points corresponding to very small currents de-
viate because of large relative uncertainties, last data point
deviates because the parasitic resistance can no longer be neg-
lected. So we discard these from our analysis.

With this graph, the tangent of the slope of the regression
line gives us directly n ≈ 1.55. The intercept −7.39 gives us
−n lnA, so that A ≈ e7.39/1.55A ≈ 119A.

By very large currents, a certain change in current ∆Id will
give rise to just a tiny change in the voltage drop ∆V at the
diode junction, if we can keep the temperature constant by
compensating with the resistor. [according to the exponential
dependence of Id = Id(V )], which is much smaller than the
change in the voltage drop on the parasitic resistor Rs∆Id.
So, we can determine Rs from the experimentally measured
dependance of the diode current Id on the total voltage V ′ =
V + IdRs at the limit of large currents.

RT (kΩ) Id (A) V ′ (V)
0.986 0.85 2.41
1.435 0.7 2.3
1.360 0.75 2.33
6.55 0.189 1.916

1



The regression line slope gives directly Rs ≈ 0.75Ω.
Other option is to measure the voltage, temperature and

current (at high current values) and substract the diode
voltage calculated from the model to get the voltage drop
on series resistance.

In both cases, it is important that the voltage is measured
directly from the LED wires, to ignore the any additional
voltage drops on high current carrying part of circuit.

Task 2. The idea is to compare the thermal expansion of
air inside the bottle when the heat is being released by the
diode, and when this is done by the resistor. In the latter
case, all the consumed electrical power is released as heat; in
the former case, part of the heat escapes the bottle as light
radiation energy. The pressure inside a bottle is a function of
its temperature, and the temperature which will establish in-
side the bottle is defined by the balance between the thermal
dissipation power, and the rate by which heat is escaping the
bottle. The latter is a function of the temperature inside
the bottle, and hence, the temperature inside the bottle is a
function of the heat dissipation power. Therefore, the pres-
sure inside the bottle is also a function of the heat dissipation
power.

First we need to build a manometer which allows us to
measure pressure difference — either between the pressure
inside the bottle and the atmospheric pressure, or between
the pressure inside the two bottles. To that end, we fill a tube
with water and folding it into a U-tube; pressure difference
can be determined via the water column height difference
between two halves of the tube.

One possible approach to this problem is to compare heat
dissipation on the diode with a heat dissipation on the resistor:
one may adjust (using the potentiometer) the heating power
of the resistor to reach such a state that the pressures inside
the bottles are equal. If this state is reached when the elec-
trical consumption power of the diode is PD and the power of
the resistor is PR then we can conlcude that thermal dissipa-
tion power of the diode is also PR, and hence, PD−PR escapes
the bottle as the light radiation so that η = 1− PR/PD.

Thermal equilibrium inside the bottles is reached relatively
slowly, one must wait aproximately for 5-10 minutes. There-
fore, finding the state when the heat dissipation powers on
the diode and on the resistor are equal may be a relatively
slow process. An alternative approach is to assume that the
heat exchange rate with the surrounding to be linear in tem-
perature (this assumption is well-founded as the diode never
becomes very hot). Then we can make two series of measure-
ments for the pressure inside the bottle as a function of elec-
trical consumption power: first, when the current is driven
through the diode, and second, when it is driven through
the resistor, ∆p = ∆p(P ). Fitting the data to a linear law,
∆p = kP , we obtain the values of the proportionality coeffi-
cient k both for the diode (kD) and for the resistor (kR); then,
η = 1− kR/kD. Note that since the pressure is proportional
to the column height difference, we can express the pressure
in terms of the height of water column: the proportionality
factor cancels out from the ratio.

Measurement data are given in the table below; I, V , P ,
and d refer to the measured current, voltage, power, and water
column height difference, respectively; index “L” refers to the
measurements with a diode, and “R” — to the measurements
with a resistor.

ID VD PD dD IR UR PR dR
101.5 1.85 0.1878 8 101.9 0.585 0.0596 5
198.2 1.95 0.3865 15 190.1 1.09 0.2072 16
300 2.04 0.6120 23 300 1.76 0.5280 41
390 2.11 0.8229 33 390 2.35 0.9165 71
480 2.18 1.0464 45 470 2.73 1.2831 103

Based on these slopes kD = 1 − 41.0mm/W/79.8mm/W ≈
0.48

Note that it is also possible to measure the efficiency us-
ing the temperature sensor: it works in the same way as
the method using air expansion described above. We com-
pare temperature of the circuit board as function of electrical
power supplied to the diode [TD(P )], and also the temperat-
ure when power is supplied to the resistor [TR(P )]. Assuming
that dominating part of the heat is dissipated into surround-
ings via the circuit board and only a negligible part of it
leaves as a heat radiation at the diode and resistor, respect-
ively (this is an assumption which is valid with a really good
accuracy), we can find η = 1− TD(P )/TR(P ), or even better,
η = 1−κD(P )/κR(P ), where κD and κR denote the slopes of
the respective graphs. The result is the same as shown above,
η ≈ 0.46 ± 0.04. It is also possible to calculate the internal
efficiency of the junction by subtracting the power dissipation
on the parasitic resistance; the result is ηinternal ≈ 0.53.

Task 3. According to our model, the photocurrent does not
depend on the voltage, but because the diode current does,
the total current through the diode depends on the voltage.
For the maximum harvestable electrical power Pmax we must
find a voltage where P = V Ip − V Id is the greatest.

We can do it in multiple ways. One way is to measure the
Ip ≈ 0.020mA by shorting the diode with a am-meter, and
then finding the maximum analytically or numerically from
our model. Using the diode parameters from above we get
Pmax ≈ 0.026mW. Other way is to change the voltage on
the diode with potentiometer, measure the current and the
voltage and find the maximum by scanning the range where
current and voltage are positive, see the circuit below.

The data of measurements are given in the table below; the
graph shows both the experimental data points and theoret-
ical dependence Id(V ) − Ip, where Ip = −15 µV, determined
using the measurement at V = 0V. As we can see, the two
curves are fairly close; there is a small mismatch which can
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partly explained by a leakage current due to a certain large
effective resistance being connected in parallel to the diode’s
junction.

V (V) I = Id − Ip (A) P = V I (µW)
0 -15 0

0.18 -14.8 2.664
0.4 -14.7 5.88
0.6 -14.6 8.76
0.8 -14.5 11.6
0.99 -14.5 14.355
1.2 -14.2 17.04
1.3 -12.8 16.64
1.35 -11.3 15.255
1.4 -6 8.4
1.43 -0.5 0.715
1.46 8.6 -12.556

The graph includes also the curve for the electrical power
produced by the diode, P = V I. The maximum Pmax ≈
17µW can be determined as the maximum of this curve. The
efficiency is found as

ηp =
Pmax

Pi
=

Pmax

ηI1V (I1)
S

α4πd2

,

where S
α4πd2 is fraction of the light reaching the active area

of the LED; V1 and I1 denote the voltage and current of the
other diode, respectively. Numerically we obtain ηp ≈ 0.04.
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