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1 Three balls

Let the ball A is given an initial velocity v along the axis Y ,
which is perpendicular to the rod. The total momentum of
the system conserves, therefore the center-of-mass (CM) of
the system moves with a constant velocity:

vCM =
mv

3m
=
v

3

along Y . In what follows, we will work in the CM frame of
reference, which is an inertial system of reference. Therefore, in
the CM frame the laws of conservation of energy, momentum,
and the angular momentum hold true. The initial velocities
of the three balls along Y are:

vA =
2v

3
, vB = vC = −v

3
.

Correspondingly, the total kinetic energy of the balls is:

E =
mv2

2

(
4

9
+

1

9
+

1

9

)
=
mv2

3

and the total angular momentum with respect to the CM
equals:

L = m
2v

3
`−mv

3
(−`) = mv`.

In any moment the three balls form an isosceles triangle
with an angle 2ϕ at the top vertex. The distance between A
and C is minimal when either ϕ = 0, or ϕ̇ = 0. For ϕ = 0,
however, the laws of conservation are not consistent with the
rigidity of the rods. Therefore, at the minimal distance ϕ̇ = 0,
and in this particular instance the system behaves as a rigid
body whose moment of inertia with respect to the CM can be
obtained through:

I =
L2

2E
=

3

2
ml2. (1)

On the other hand, the moment of inertia I could be found
independently from geometric considerations. Although, I
could be found using the distances from the balls to the CM
(medicentre of a triangle), it is more convenient to use this
relatively unknown formula for the moment of inertia of a
collection of point masses with respect to CM:

I =

∑
i,jmimj(ri − rj)

2∑
imi

.

In our case:

I =
m2

3m

(
AB2 +BC2 +AC2

)
=
m

3

(
2`2 + d2

)
. (2)

From (1) and (2), we obtain the minimal distance:

d = `

√
5

2
≈ 1.58 `

2 Solenoid

Magnetic field gives rise to magnetization of water molecules,
i.e. each of the molecules becomes a magnetic dipole. Inhomo-
geneous magnetic field exerts a force to a magnetic dipole.

Water molecules being diamagnetic are pushed away from the
region of stronger magnetic field. Water reaches a state with
mechanical equilibrium where the magnetic force is balanced
by a force due to pressure gradient. Hence, in mechanical
equilibrium, regions with stronger magnetic field correspond
to smaller pressures. When the current in the solenoid is
increased, the pressure differences grow, and at a certain
moment, a region will appear where the pressure is smaller
than the saturation pressure of the water vapour. This is the
moment when water starts boiling.

To begin with, let us discuss possible reasonable approxima-
tions. First, we can neglect the water column pressure which is
only 2 to 4 percents of the atmospheric pressure. Second, the
saturation pressure of water vapour under normal conditions
is also much smaller than the atmospheric one and therefore
can be neglected. Thus we can say that boiling starts when
the pressure drop due to magnetic field becomes equal to p0.

So, we need to relate the pressure difference caused by the
magnetic field to the magnetic field strength. Notice that if a
region with magnetic field B is filled with water, the magnetic
field energy density is B2/(2µrµ0); meanwhile, if there is no
water, the energy density is B2/(2µ0). So, we can ascribe the
energy density difference

∆w = (µ−1
r − 1)B2/(2µ0)

to the interaction of water and magnetic field. Next, consider
the following thought experiment. We push away a small
volume V of water from the neighbourhood of a point P in the
water where the magnetic field strength is B; the displaced
water fills in a narrow layer at the top of the water surface of
equal volume. Assuming that the magnetic field is negligibly
small at the top, by comparing the initial and final states,
we conclude that the total interaction energy is reduced by
V (µ−1

r − 1)B2/(2µ0). When pushing away water from P we
perform mechanical work pV , where p is the pressure at point
P . At the upper surface of the water, the moving interface
performs mechanical work p0V so that the net mechanical
work performed by water during this process is V (p0−p). Due
to energy conservation law, V (µ−1

r − 1)B2/(2µ0) = V (p0 − p)
so that

p0 = p+ (µ−1
r − 1)B2/(2µ0).

Note that the way how we derived this relationship is com-
pletely analogous to how the Bernoulli law is derived, and
in fact, the obtained equality can be interpreted as a mod-
ified Bernoulli law for zero speed where the volume dens-
ity of potential energy in gravity field ρgh is replaced with
(µ−1
r − 1)B2/(2µ0) — the energy density of magnetic in-

teraction. This equality can be simplified by noting that
µ−1
r − 1 = −χ/µr ≈ −χ so that

p0 − p = −χB2/(2µ0).

As discussed above, the boiling condition is p ≈ 0, hence

B =
√
−2µ0p0/χ.

Finally, we apply the formula for magnetic field strength inside
a long solenoid B = µ0IN/` to find

I =
`

N

√
2p0
−χµ0

= 4.4 kA.
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3 Staircase

A Since n = −y/h = (x/λ)2/3, x(n) = n2/3λ. The distance
between the steps is

dn = x(n+ 1)− x(n) ≈ dx(n)

dn
=

2

3
λn−1/3 = n−1/3 · 30 µm.

B Equilibrium energy value, being minimum, must be stable
against small perturbations of the crystal shape. Allowed are
perturbations which conserve the total volume of the crystal.
In other words a small horizontal displacement of one step
must be accompanied by an equal and opposite displacement
of another step.

The energy change εn(δ) associated with a small horizontal
displacement δ of the n-th step is

εn(δ) = µ
(

(dn + δ)ν − dνn + (dn+1 − δ)ν − dνn+1

)
≈

≈ µν
(
dν−1
n − dν−1

n+1

)
δ.

In order for εn(δ) + εm(−δ) to be zero for arbitrary n and m
it is necessary to require that the factor in the parentheses
does not depend on n:

dν−1
n − dν−1

n+1 = const.

Substituting dn ∝ n−1/3, we get1:

n(1−ν)/3 − (n+ 1)(1−ν)/3 ≈ 1− ν
3

n(1−ν)/3−1 = const,

1− ν
3
− 1 = 0 =⇒ ν = −2.

The interaction energy corresponds to that of two dipoles in
2D:

E(d) ∝ 1

d2
.

1Trivial solutions ν = 0 and ν = 1 imply that the total energy within
given constraints does not depend on the shape of the crystal.
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Part A. 
Turn the CO2  sensor on. It takes 2-3 minutes for the sensor self-calibration, after that the 

measurement starts. 

Before the main experiment concentration of 𝐶𝑂2 in the vessel is equal to the concentration 𝑐0 of 𝐶𝑂2  

in the atmosphere, let us determine it 

𝑐0 = (0.050 ± 0,005)%. 

Now let us consider the diffusion process theoretically and express typical diffusion time 𝜏 via 

the membrane geometrical parameters.  

The change of 𝐶𝑂2 molecules number inside the vessel per unit time is equal 

𝑑

𝑑𝑡
(𝑐𝑉) = −𝑗𝑝𝑆0 

where 𝑝𝑆0 is the net area of channels. The flow through the channels is 

𝑗 = 𝐷
𝑐 − 𝑐0

ℎ
 

and we get differential equation for concentration 𝑐(𝑡) 

𝑑𝑐

𝑑𝑡 
= −

𝐷𝑝𝑆0

𝑉ℎ
(𝑐 − 𝑐0) 

The solution is 

𝑐(𝑡) = 𝑐0 + 𝐶 exp (−
𝑡

𝜏
) 

where 

𝜏 =
𝑉ℎ

𝑝𝑆0𝐷
 

According to the problem text the Knudsen flow takes place in the membrane channels. In this 

case the diffusion coefficient D is determined by the collisions of molecules with the walls of 

the channel 

𝐷 =
1

3
𝑣𝑑. 

Knowing the molar mass of carbon dioxide 𝜇 = 44
𝑔

𝑚𝑜𝑙
, we calculate the thermal velocity of CO2  

molecules for room temperature 𝑇 = 295 К: 

𝑣 = √
8𝑅𝑇

𝜋𝜇
= 376 𝑚/𝑠 

Finally we have 

𝜏 =
3𝑉ℎ

𝑝𝑆0𝑣𝑑
 



Calculate the full membrane area 𝑆0 =
𝜋

4
 𝑑𝑤

2 =  1.33 𝑠𝑚2. We measure the length and  the 

inner diameter of the vessel: 

𝐿 = 5.0 𝑠𝑚 

𝐷𝑖𝑛 = 7.4 𝑠𝑚 

and calculate its inner volume 𝑉 = 215 𝑠𝑚3. The volume of fan, sensor and tubes way be 

neglected. 

Now let's procced with the experiment. We will use our own lungs as a source of carbon 

dioxide. Let's take a breath and exhale the air into the cylinder through the tube, then close 

both tubes with clips. A second tube is needed in order for the air to better circulate in the 

vessel during the exhalation. 

To ensure that the concentration of CO2 in the vessel is the same at each moment, turn on the 

internal fan, it mixes the air in the vessel. To ensure that the concentration of CO2 outside the 

membrane is equal to 𝑐0, turn on the second fan to blow on the membrane outside. 

 

Measure the dependence 𝑐(𝑡) ,where the concentration is measured in %, and the time in 

seconds. The results are shown on the plot.  

 

Let's plot a linearized graph in the coordinates 𝑡, 𝐿𝑛 (𝑐 − 𝑐0).  



 

From its slope we calculate the required time 

𝜏 = 1204 ± 10 𝑠𝑒𝑐 

Slope and its uncertainty were calculated with OLS. 

 

Notes. 

1. The CO2 concentration in the exhaled air is 4% and the sensor's working limit is 0.5%. 

Therefore, if you blow into the installation strongly, the sensor is off scale. Participants can wait 

until the CO2 concentration in the vessel drops below 0.5% and then start the measurements. 

There are also two other ways to reduce the CO2 concentration in the vessel. You can unscrew 

the cover of the installation (with tubes, not with the sample!) and utilizing the fan blow the 

installation with atmospheric air. Another way is to open both tubes and suck the air out 

through one of them. The atmospheric air comes inside the vessel through the second tube. 

This method is the fastest and easiest. 

2. The equipment setups for parts B,C are independent on equipment for part A, so the optical 

measurements can be performed simultaneously with the diffusional. Moreover, the sensor 

stores the data.  

3. If the participant does not use the second (external) fan, the measured value 𝜏 will be about 

2 times larger, which will give incorrect answer for the pore diameter. 

 

Part B. 
Optical path difference between beams reflected from top and bottom sides of the membrane: 

𝛿 = 2𝛿1 − 2𝛿2 +
𝜆

2
 

 
𝜆

2
 appears because of phase change in case of reflection from the surface with higher refractive index. 

sin 𝛼

sin 𝛽
= 𝑛 



 

𝛿1 = 𝑛
ℎ

cos 𝛽
 

𝛿2 =
ℎ

cos 𝛽
sin 𝛽 sin 𝛼 

𝛿 −
𝜆

2
=

2ℎ

cos 𝛽
(𝑛 − sin 𝛽 sin 𝛼) =

2ℎ

cos 𝛽
(𝑛 − 𝑛 sin2 𝛽) =

2𝑛ℎ

cos 𝛽
cos2 𝛽 = 2𝑛ℎ cos 𝛽 = 2𝑛ℎ √1 − sin2 𝛽

= 2𝑛ℎ √1 −
sin2 𝛼

𝑛2
= 2ℎ √𝑛2 − sin2 𝛼 

𝛿 = 2ℎ √𝑛2 − sin2 𝛼 +
𝜆

2
 

(1) 

Reflectance maximums can be observed if  𝛿 = 𝑚𝜆, where 𝑚 is integer. Reflectance maximums can be 

observed if 𝛿 = (𝑚 + 1/2 )𝜆. 

Rotating the sample, we can see dozens of minimums and maximums. √𝑛2 − sin2 𝛼 depending on the 

number of minimum is linear according to the equation (1), as shown on the graph. Slope is equal 2ℎ/𝜆.  
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 Linear Fit

Value Standard Error

Intercept -268.90752 0.57503

Slope 226.05386 0.42826

 

Slope and its uncertainty were calculated with OLS. 

ℎ = 74.6 ± 0.2 𝜇𝑚 

This data is shown for demonstration. During the competition, students were not supposed to measure 

positions of that much number of minimums and plot a graph, because this does not improve accuracy. 

The best solution is to rotate the sample and calculate number of minimums between two angles 𝛼. The 

more is number of minimums 𝑁, the better is accuracy. In this case, uncertainty 휀ℎ may be estimated as 

휀ℎ = 1/𝑁. 

The sample is not fixed on the rotating table. Before the measurement, one should set a zero using the 

reflected laser beam. 

 

Part C. 
In calculations me denote Δ𝑛∗ ≡ 𝑛2 − 𝑛1, Δ𝛽 ≡ 𝛽1 − 𝛽2.  



From Snell’s law 

𝑛1 sin 𝛽1 = 𝑛2 sin 𝛽2 

Optical path between beams is 𝛿 = ℎ(𝑛1 cos 𝛽1 − 𝑛2 cos 𝛽2). Taking condition 𝑛2 − 𝑛1 ≪ 𝑛1 into 

account, we should derive 𝛿 in terms of 𝑛 and Δ𝑛∗. 

𝛿 = ℎ(𝑛1 cos 𝛽1 − 𝑛2 cos 𝛽2) = ℎ (𝑛1 cos 𝛽1 − 𝑛1

sin 𝛽1

sin 𝛽2
cos 𝛽2) = 𝑛1ℎ sin 𝛽1 (

cos 𝛽1

sin 𝛽1
−

cos 𝛽2

sin 𝛽2
)

= 𝑛ℎ sin 𝛽 (cot 𝛽1 − cot 𝛽2) 

cos 𝛽1 − cos 𝛽2

𝛽1 − 𝛽2
≃ (cot 𝛽)′ = −

1

sin2 𝛽
 

𝛿 = −
𝑛ℎ

sin 𝛽
Δ𝛽 

(C1) 

Now we will derive Δ𝛽 in terms of Δ𝑛∗. 

𝑛1

𝑛2
=

sin 𝛽1

sin 𝛽2
 

𝑛2 − Δ𝑛∗

𝑛2
=

sin(𝛽2 + Δ𝛽)

sin 𝛽2
≃

sin 𝛽2 + cos 𝛽2 Δ𝛽

sin 𝛽2
 

Δ𝛽 = −
Δ𝑛∗

𝑛

sin 𝛽

cos 𝛽
  

(C2) 

Combining (C1) and (C2), we obtain the equation: 

𝛿 =
ℎ

cos 𝛽
Δ𝑛∗ 

(C3) 

Relation between Δ𝑛 and Δ𝑛∗ may be found from formulae given in the task: 

1

𝑛2
2 =

cos2 𝛽2

𝑛0
2 +

sin2 𝛽2

𝑛𝑒
2  

(C4) 

1

𝑛1
2 =

1

𝑛0
2 

(C5) 

(C4)-(C5): 

1

𝑛2
2 −

1

𝑛1
2 =

cos2 𝛽2

𝑛0
2 −

1

𝑛0
2 +

sin2 𝛽2

𝑛𝑒
2  

𝑛1
2 − 𝑛2

2

𝑛1
2𝑛2

2 = sin2 𝛽2

𝑛0
2 − 𝑛𝑒

2

𝑛0
2𝑛𝑒

2  



𝑛1 + 𝑛2

𝑛1
2𝑛2

2 Δ𝑛∗ =
𝑛0 + 𝑛𝑒

𝑛0
2𝑛𝑒

2 sin2 𝛽2 Δ𝑛 

Δ𝑛∗ = sin2 𝛽 Δ𝑛 

(C6) 

Taking account of (C3), it yields: 

𝛿 =
ℎ

cos 𝛽
sin2 𝛽 Δ𝑛 

(C7) 

Polarized waves may interfere in projections. We should use 2 polarizers with polarization axes pointed 

at 45° with membrane rotation axis.  

 

First polarizer let beams 1 and 2 have equal intensity. Second polarizer projects waves on its polarization 

axis, so they can interfere. Polarization axes of polarizers may be perpendicular or parallel. Using the 

described setup, one can observe minimums with zero intensity and bright maximums. 

Over setups me be used to observe the main effect. One can arrange the setup without second polarizer 

(laser beam is polarized itself), or place polarizers at angles differs from 45°. 

In any case, when we rotate the membrane, we can find three transmittance extrema. If we use the 

setup described above, optical paths in these points will be: 𝛿1 = 𝜆/2, 𝛿2 = 𝜆, 𝛿3 = 3/2𝜆. 

Transmittance depending on the angle of incidence is shown on the graph. To obtain this perfect data, 

we also measured transmittance without the second polarizer to take account of reflectance rising at big 

angles.  

Students were not supposed to take a lot of measurements or plot the graph, this isn’t necessary to 

complete the task. To calculate Δ𝑛 with best possible accuracy, we just need to determine angles of 

three transmittance extrema by any way. 
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Δ𝑛 values are calculated according to the equation (C7). 

𝛿 𝛼, ° 𝛽, ° Δ𝑛 

1/2 𝜆 32.5 20.1 0.0352 

𝜆 48 27.2 0.0375 

3/2 𝜆 62 31.8 0.0405 

휀Δ𝑛 =
1

Δ𝑛
√∑

(Δ𝑛i − Δ𝑛)2

𝑁(𝑁 − 1)

𝑁

𝑖

  

Δ𝑛 = 0.0378 ± 0.0015 

Using the plot Δ𝑛(𝑝), we determine the porosity of the sample.  

𝑝 = 13.5 ± 0.5% 

Coda 
In this part, we can determine diameter of pores, using results, obtained in previous parts: 

𝜏 = 1204 ± 10 

ℎ = 74.6 ± 0.2 мкм 

𝑝 = 13.5 ± 0.5% 

In part A we deriver the equation 

𝜏 =
3𝑉ℎ

𝑝𝑆0𝑣𝑑
 



It yields  

𝑑 =
3𝑉ℎ

𝑝𝑆0 𝑣𝜏
 

Where 𝑣 is thermal velocity of 𝐶𝑂2 (𝑇 ≃ 300𝐾, more accuracy isn’t needed): 

𝑣 = √
8𝑅𝑇

𝜋𝜇
= 376 𝑚/𝑠 

𝑉 is volume of the cylindrical vessel, it can be measured ruler: 

𝑉 = 𝜋
𝐷𝑖𝑛

2

4
𝐿 

𝐿 = 5.0 𝑐𝑚 

𝐷𝑖𝑛 = 7.4 𝑐𝑚 

𝑉 = 215𝑐𝑚3 

Numerical answer is: 

𝑑 = 6.0 ± 0.5 𝑛𝑚 

Here you can see the surface image of the membrane studied in this experimental problem. This image 

was obtained with scanning electron microscope (SEM). Average diameter of channels is about 15 𝑛𝑚. 

The reason of difference between these experimental results is that diffusion inside pores is not the only 

limiting stage even with two fans are turned on. Moreover, some fraction of channels is branched and 

terminated (A.A. Noyan et al. / Electrochimica Acta 226 (2017) 60–68). 

 

This problem was developed and designed by Alexey Noyan, Alexander Kiselev and Fedor Tsybrov. 

Samples of anodic aluminum oxide were fabricated in MSU by Kirill Napolskii, Alexey Leontiev, Ilya 

Roslyakov and Sergey Kushnir. 

If you have any questions about this experimental problem, please don’t hesitate to contact the author 

noyan@phystech.edu. 


