
EuPhO-2021 Theoretical Problems - Solutions English

T1: A Leak

Let p1, V1, T1 denote the (time dependent) pressure, vol-
ume, and temperature in the upper chamber, and p2, V2,
T2 — those in the lower one. Note that V1 ≡ V does not
change.
Consider a parcel of volume v below the diaphragm

containing n moles of helium. It is convenient to imag-
ine it bounded by two fictitious free thin massless pis-
tons. During slow perturbations the parcel undergoes
an adiabatic process. The pressure and the temperature
for the parcel are actually the pressure and the temper-
ature for entire lower chamber p2 and T2. The energy
conservation for the parcel is

0 = p2dv + d
(
3

2
nvRT2

)
=

5

2
p2dv +

3

2
vdp2.

This gives

v5p32 = const, (1)
T 5
2 p

−2
2 = const . (2)

The leak begins when the pressure below the di-
aphragm exceeds that in the upper chamber by ∆p ≡
p0 − p = mgH/V = px, where

x =
mgH

pV
. (a., b., c.)

a. We may let v = V2 before that.

V 5p3 = V 5
0 (p+∆p)3 = V 5

0 p
3(1 + x)3

V0 = V (1 + x)−3/5 (a.)

b. The energy conservation for the whole system:

0 = p1dV1 + d
(
3

2
n1RT1

)
+ p2dV2 + d

(
3

2
n2RT2

)
=

5

2
(p1dV1 + p2dV2) +

3

2
(V1dp1 + V2dp2) =

5

2
p2d(V + V2) +

3

2
(V + V2)dp2,

since the pressure above the diaphragm remains lower
than that below by the same margin ∆p during the later
process and dV2 = d(V + V2). Similarly to (1), we get

(V + V2)
5p32 = const .

The pressure p′2 in the lower chamber when the piston
touches the diaphragm is found from the equation

V 5p′32 = (V + V0)
5p30 = V 5

(
1 +

1

(1 + x)3/5

)5

p3(1 + x)3,

p′2 = p
(
1 + (1 + x)3/5

)5/3

. (3)

The pressure in the upper chamber at this moment is

p′1 = p′2 −∆p = p

((
1 + (1 + x)3/5

)5/3

− x

)
.

The temperature in the upper chamber is found from the
equations of state pV = nRT and p′V = (2n)RT ′

T ′
1 =

T

2

((
1 + (1 + x)3/5

)5/3

− x

)
. (b.)

The temperature and the pressure in the lower cham-
ber are related by (2). Substituting (3) we get

T ′
2 = T

(
p′2
p

)2/5

= T
(
1 + (1 + x)3/5

)2/3

. (c.)

Preliminary grading scheme

a1 It’s stated (or written as a formula) that the
process is adiabatic

0.5

a2 Relation between V and p is found in adiabaic
process

1.0

a3 Condition on when the diaphragm leaks 0.5
a4 Answer for V0 1.0
b1 Energy conservation for the whole system in

differential form. If conservation law is writ-
ten only for one half but heat transfer is taken
into account: 0.5 pts.

1.0

b2 Internal energy for a mono-atomic gas 0.5
b3 Usage of V1 = const 0.2
b3 Usage of p2 − p1 = const 0.3
b4 Relation between V2 and p2 1.0
b5 Equation to find p′2 (or T ′

2) before the end 1.0
b6 Usage of n′ = 2n 0.5
b7 Answer for T ′

1 0.5
c1 Relation between T ′

1 and T ′
2 1.0

c2 Answer for T ′
2 1.0

Arithmetic or typo errors gives half of point (rounded
up to 0.1) for the item and is not considered as a mistake
afterwards.

T2: Thread on cylinder

Fig. 1 shows the cylinder and the loop from three differ-
ent angles; P denotes the pulled point of the loop, while
O is the top point of the thread.

Fig. 1

Imagine that the side of the cylinder is cut along the
generatrix AB passing through point P , and then the
side (including the loop) is unfolded as shown in Fig. 2.
In this figure points A and A′, B and B′, P and P ′ are
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equivalent, respectively. Let us introduce a Cartesian
coordinate system on this unfolded plane so that point
O is the origin, axis z is parallel with the axis of cylin-
der and directed downwards, axis x is perpendicular to
z (i.e. horizontal).

Fig. 2

Consider the forces acting on a small piece of the
thread (with horizontal projection ∆x) indicated with
red line in both figures. These are the tensions at both
ends of the small piece exerted by neighbouring parts of
the thread, the normal force ∆N and the friction force
∆f exerted by the cylinder. On the verge of slipping, the
direction of ∆f is parallel to the z-axis. Since the small
piece of thread is in equilibrium, the x-component of the
tension is the same everywhere:

Tx = const.

The normal force ∆N can be determined by looking
at the top view of the loop in Fig. 1. The polar angle
corresponding to small piece of thread is∆φ = ∆x/R, so
the force balance in the radial direction can be written
as

2Tx sin
∆φ

2︸ ︷︷ ︸
≈∆φ/2

−∆N = 0 −→ ∆N = Tx
∆x

R
. (4)

The frictional force on the verge of slipping is given by

∆f = µ∆N . (5)

Thus, the force balance on the small piece of thread in
the z direction (see Fig. 2):

Tx
dz
dx

∣∣∣∣
x+∆x

− Tx
dz
dx

∣∣∣∣
x

−∆f = 0 , (6)

where we expressed the z-component of the tension
forces with Tx and the tangent dz/dx. Using the three
equations above and taking the limit ∆x → 0, we get the
differential equation

d2z

dx2
=

µ

R
,

where we used the fact that Tx ̸= 0. By direct integration
and taking into account the boundary conditions z(0) = 0
and z′(0) = 0 we get

z(x) =
µ

2R
x2 ,

so the shape of the thread on the unfolded side surface
(Fig. 2) can be described by a parabola.

The thread needs to span over the entire cylinder, so
its length can be calculated as

L0 =

∫ πR

−πR

√
dx2 + dz2 = 2

∫ πR

0

√
1 +

(
dz
dx

)2

dx .

Substituting the z(x) function we get:

L0 = 2

∫ πR

0

√
1 +

(µx
R

)2

dx =

(
R

µ

)
2

∫ πµ

0

√
1 + ξ2 dξ ,

where we introduced the notation ξ = µx/R. Using the
integral given in the text of the problem:

L0 = πR
√
1 + (πµ)2 +

R

µ
arcsinh(πµ) .

If the length of the thread is shorter than the length
calculated here, then there is no solution satisfying the
thread length constraint, i.e. the thread cannot slip.

Note. In the limit µ → 0 the loop slips even if L = 2πR, which
should be reproduced by our final formula. Using the relation
for the inverse hyperbolic function given in the problem text,
then expanding the logarithm in Taylor series in linear order
around 0 we get:

arcsinhx ≡ ln
(
x+

√
1 + x2

)
≈ ln (x+ 1) ≈ x ,

so for small values of µ we get

L0 ≈ πR+
R

µ
(πµ) = 2πR .

Grading scheme: T2
2-i. A figure or figures reflecting the
correct geometry such as: the loop
is a non-planar curve in all figures
(0.5 p), existence of exactly one cusp
(0.5 p, if the „back” is hidden, 0 p).

0.5 p + 0.5 p

2-ii. Realizing that on the verge of
slipping the frictional force is paral-
lel with the axis of the cylinder for
every small piece of the thread and
∆f = µ∆N . (If any of the two is
missing, then 0.2 p)

0.5 p

2-iii. Correct equation for the force
balance in z direction involving
frictional force or the load (which
is pulling down the loop) and the z
components of the tension.

0.5 p

2-iv. Tx = const. + correct explana-
tion based on the balance in x direc-
tion. If the physics is incompatible
with the geometrical assumptions
(e.g. planar curve for the loop and
the existence of a frictional force
acting on small pieces), no points
are given

0.5 p + 1.5 p

2-v. Expressing the normal force
∆N acting on a small segment with
Tx and dx (or dϕ). If the relation
x = Rφ or dx = Rdφ is not used here
or anywhere else, 1.5 p is given. If
the expression is wrong but ∆N is
proportional to the curvature (1/R),
1.0 p is given.

2.0 p
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2-vi. Deriving the correct differ-
ential equation for z(x) (if the diff.
equation is wrong due to any rea-
son, 0 p)

1.5 p

2-vii. Solving the diff. equation for
z(x) correctly (including boundary
conditions). If only one integral is
evaluated correctly, 0.3 p are given.
For stating only the boundary con-
ditions (both z(0) and z′(0)) 0.2 p.

1.0 p

2-viii. Writing down the length of
the thread in terms of an integral
of z(x), i.e. writing down the length
constraint

0.5 p

2-ix. Evaluating the integral cor-
rectly (factor mistake in calculation
0.5 p, wrong units 0.2 p)

1.0 p

Total T2: 10.0 p

General guidelines for marking:
• Granularity for marks is 0.1 p.
• A simple numerical error resulting from a typo is pun-
ished by 0.2 p unless the grading scheme explicitly says
otherwise.

• Errors which cause dimensionally wrong results are
punished by at least 50 % of themarks unless the grad-
ing scheme explicitly says otherwise.

• Propagating errors are not punished repeatedly un-
less they either lead to considerable simplifications or
wrong results whose validity can easily be checked
later.

T3: Glass ball

To begin with, let us notice that if a ray coming from a
point P on the stripe is refracted at pointQ at the surface
of the ball towards a very distant pointA (which denotes
the aperture of the camera lens), the ray will remain in
the plane PQO where O is the centre of the sphere. This
means that those rays which arrive from P to A must
lay in the plane POA, and the rays can be conveniently
depicted in the POA-plane.
The angle γ = γ(α) between vectors PO and QA is

given by

γ ≡ 2α− β (7)
n sinα = sinβ (8)

and is a non-monotonous function of α which achieves
its maximum γ0 by a certain α0. This means that for a
fixed P and A, if ̸ OPA < γ0, there are two such angles
α and, hence, two such positions Q1 and Q2 for the point
Q that the ray PQAwill reach the point A (here we have
assumed that the point A is at a very big distance). So,
when viewed from the point A, the image of the point P
is split into two points Q1 and Q2. On the other hand, if
̸ OPA > γ0, rays from P cannot reachA, and such points
on the stripe cannot be seen in the photo. If ̸ OPA =
γ0, the two images Q1 and Q2 merge into a single point
bridging the two images of a piece of stripe into a closed
loop.

P

Q A

O

Q

Now it becomes clear that the place where images Q1

andQ2 merge into a single imageQ0 is the key to finding
the coefficient of refraction. Indeed, the point Q0 can be
found in the photo as the point where the blue ellipse
(the images of a segment of the stripe in red light as the
blue shadow is where the red light is missing) is touch-
ing a radius of the ball, see the figure below (we need to
find tangent point with the radius because we need to
consider plane QOA which projects into a line through
the ball’s centre). There is no difference between tak-
ing the tangent to the outer edge of the elliptical stripe
and taking the tangent to the inner edge of it (point Q′

0

in the photo below). Then, sinβ0 = n sinα0 can be deter-
mined from the photo as the ratio of the lengths h and
R, h/R ≈ 0.765, where h denotes the distance of the ball’s
centre O from the line Q0A, measurable in the photo as
the length OQ0 (when looking from the distant point A,
we can see only the perpendicular-to-OA component of
the segment OQ0, and R is the ball’s radius.
Since we look for an extremum of γ, upon taking dif-

ferentials from Eqns. (7,8), we obtain

2dα = dβ
n cosαdα = cosβdβ

from where

n cosα = 2 cosβ. (9)

n =

√
sin2

β + 4 cos2 β =

√
4− 3 sin2

β ≈ 1.498 ≈ 1.50.

In order to find ∆n, we could find in a similar way nV

(|OQ′′
0 | ≈ 0.755R, n ≈ 1.513 ≈ 1.51), but the result would

have a huge relative uncertainty as |OQ0| and |OQ′′
0 |have

very similar lengths. A much more precise result will
be obtained if we base our calculations on the segment
length |ST |, see the figure below. Q′′

0 is where the blue
rays have an extremum for γ while Q′

0 and Q′′
0 are two

red rays originating from the same point on the stripe.
From the photo we can measure |ST | ≈ 0.20R, hence we
can use the small parameter SQ′′

0/R ≈ 0.10.
Rays from S, T , and Q′′

0 arrive to the lens aperture, so
all these rays (which originate from the same point P on
the stripe) have the same value of γ. So, we have a set of
equations

γ ≡ 2αR − βR = 2αV − βV (10)
nV sinαV = sinβV (11)

(nV −∆n) sinαR = sinβR (12)
nV cosαV = 2 cosβV , (13)



EuPhO-2021 Theoretical Problems - Solutions English

and we would like to get an expression relating ∆n to
sinβV 1 − sinβV 2, where the indices 1 and 2 relate to the
two different solutions. Expressing αR = αV + δ we ob-
tain from Eq. (10) that βR = βV + 2δ. Now, if we expand
Eq. (12) into Taylor series, neglect the smallest termwith
∆nδ, and keep in mind Eq. (11), we obtain

nV δ cosαV − nV δ
2 sinαV

2
−∆n sinαV = 2δ cosβV − 2δ2 sinβV .

Here the two linear-in-δ terms cancel out due to Eq. (13)
so that with sinβV = nV sinαV we obtain

∆n = 3nV δ
2/2. (14)

On the other hand, |ST |/R = sinβR1− sinβR2 ≈ sin(βV +
2δ)− sin(βV − 2δ) = 4δ cosβV , hence

∆n =
3nV

2

(
|ST |

4R cosβV

)2

=
3nV

32

|ST |2

R2 − h2
≈ 0.0132 ≈ 0.013.

(15)

O

Q0R

h

Q’0
Q’’0S

T

Grading scheme

A-i
• Proving that we can see a loop because for a range
of points on the thread, a single point of thread cre-
ates two images: 0.7 pts

• The endpoints of that thread create one image
forming thereby a closed loop: 0.3 pts

Else if only the fact that rays coming to A must be in
the PQO plane is stated: 0.3 pts

A-ii Drawing a ray diagram where we can see that two
rays originating from a single point arrive both to
the lens while crossing the ball’s surface at different
points and following the Snell’s law: 1.0 pt
Else if such idea is demonstrated by words or by a
rough sketch (which does not obey Snell’s law): 0.5
pts

B-i Relating angle β to the measurable distance h in the
photo (any point on the blue or red ellipse will earn
the mark): 1pt

B-ii Measuring ratio of h to R: 0.5 pts

B-iii The idea of using point Q0: 1 pt (using Q′
0 will earn

only 0.5 pts as this corresponds to the violet light)

B-iv Obtaining a correct expression of γ as a function of
α (or equivalent calculations in different parametri-
sation): 1 pt

B-v Finding extremum and hence, the final expression
of n as a function of β or h: 1pt. If an incorrect
expression is obtained from reasonable physics be-
cause of mistakes in algebraic manipulation: 0.5 pts

B-vi If the numerical answer is correct within±0.03 and
is found using reasonable physics: 0.5 pts. Else if
the numerical answer is correct within ±0.1 and is
found using reasonable physics: 0.3 pts. No point if
the answer is guessed or is found using completely
wrong or irrelevant physics.

C-i The idea of using the width or length of the blue el-
lipse: 1 pt (red ellipse cannot be used as we don’t
know if the center of the red ellipse corresponds to
the edge of the thread, or to a point at its middle)

C-ii Obtaining Eq (14) or something equivalent based on
considering neighbouring red and violet rays: 1 pt.
If an incorrect expression is obtained from reason-
able physics because ofmistakes in algebraicmanip-
ulation: 0.5 pts

C-iii Expressing ∆n correctly in terms of measurable
quantities: 0.5 pts

C-iv Finding numerical answer correct within ±0.003:
0.5 pts. (0 pts if this answer is obtained without con-
sidering the width or height of the blue ellipse.)

Solution 2

One may alternatively prefer to consider a plane, per-
pendicular to the thread and containing the ball centre
O and the camera A. This is the plane of symmetry for
the system and corresponds to the maximum width of
the ovals. The same arguments as in the first Solution
lead to

γ = β − 2arcsin sinβ

n
= arcsin h

R
− 2arcsin h

nR
.

For n < 2 this function is not monotonous and may give
the same result for two different values of h (that is why
the mapping of an arc is a closed oval).

To get the refraction index for red we solve the equa-
tion

arcsin h1

R
− 2arcsin h1

nRR
= arcsin h4

R
− 2arcsin h4

nRR
,
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which gives nR ≈ 1.51.
One could repeat the previous argument to find nV .

One could also compare the images of the same thread
elements in different colours. This gives 4 equations

arcsin h1,4

R
− 2arcsin h1,4

nRR
= arcsin h2,3

R
− 2arcsin h2,3

nV R
,

where h1,4 means we can replace it with the value of h1

or h4. Similar rule applies for h2,3. From each equation,
we can solve for one value of nV and then take their av-
erage. This results in nV − nR ≈ 0.0145.

Grading scheme

A-i
• Proving that we can see a loop because for a range
of points on the thread, a single point of thread cre-
ates two images: 0.7 pts

• The endpoints of that thread create one image
forming thereby a closed loop: 0.3 pts

Else if only the fact that rays coming to A must be in
the PQO plane is stated: 0.3 pts

A-ii Drawing a ray diagram where we can see that two
rays originating from a single point arrive both to
the lens while crossing the ball’s surface at different
points and following the Snell’s law: 1.0 pt
Else if such idea is demonstrated by words or by a
rough sketch (which does not obey Snell’s law): 0.5
pts

B-i Relating angle β to the measurable distance h in the
photo (any point on the blue or red ellipse will earn
the mark): 1pt

B-ii Measuring ratio of h to R: 0.5 pts

B-iii The idea of using points on the blue ellipse lying on
the same radius of the sphere: 1 pt

B-iv Obtaining the correct equation to solve for nR nu-
merically: 2 pts. If an incorrect equation is obtained
from reasonable physics because of mistakes in al-
gebraic manipulation: 1 pt

B-v If the numerical answer is correct within ±0.03 and
is found using reasonable physics: 0.5 pts. Else if
the numerical answer is correct within ±0.1 and is
found using reasonable physics: 0.3 pts. No point if
the answer is guessed or is found using completely
wrong or irrelevant physics.

C-i The idea of using points on the red (or both) ellipse(s)
lying on the same radius of the sphere: 1 pt

C-ii Obtaining at least one correct equation to solve for
nV numerically: 1.5 pts. If an incorrect equation is
obtained from reasonable physics because of mis-
takes in algebraic manipulation: 1 pt

C-iii Finding numerical answer correct within ±0.003:
0.5 pts.
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E1: Hidden wire

Theoretical background

As shown in Fig. 1, the horizontal projection B⃗h of the
magnetic induction B⃗w of the wire has the same direc-
tion and is perpendicular to the wire in all points of the
xy plane. It is clear that B⃗h makes with North (y) direc-
tion an angle ψ = 180◦ − θ, where θ is the angle between
the direction of the current and the positive x-direction.
Themagnetic needle points along the vector B⃗ = B⃗h+B⃗E
of the total magnetic induction. As evident from the vec-
tor triangle on Fig. 1(a), the deflection angle φ can be ob-
tained through the sine-theorem:

Bh
BE

=
sinφ

sin(ψ − φ)
=

sinφ
sin(θ + φ)

(1)

Consider a point on the surface at a distance d from the
wire projection onto xy plane, and at a distance r =√
d2 + h2 from the wire, as shown in Fig. 1(b). It follows

from the Ampère’s law that the magnitude of magnetic
induction of the wire at that point is

Bw =
µ0I

2πr
(2)

and the magnitude of its horizontal projection is

Bh = Bw cosα =
µ0Ih

2π(d2 + h2)
. (3)

Equations (1) and (3) are sufficient to complete all tasks
of the problem.

Figure 1: Notations used in the derivation of the basic
equations.

Task (a): Determination of the horizontal position
of the wire

As evident from the vector triangle (Fig. 1), the maxi-
mum absolute value of the deflection angle at a given
current is met at d = 0 where Bh is maximal, i.e. verti-
cally above the wire. Therefore, the wire can be tracked
by finding two or more points on the surface where |φ|
reaches a maximum. First, a coarse scan of the border
with a step of, say, 10 mm, can be performed in order to
locate intervals, where |φ| goes through a maximum. In
thiswaywe establish that thewire projection crosses the
West side (x = 0mm) at y ∈ [60mm, 90mm] and the East
side (x = 100 mm) at y ∈ [10 mm, 30 mm]. A finer scan of

Table 1: Points, where |φ| reaches a maximum of 143◦ at
a current I = +5 A.

x (mm) y (mm)
0 75
20 64
40 52
60 41
80 29
100 17

these intervals with a step of 1 mm allows to determine
the approximate coordinates of the two crosspoints as
P1 = (0.0±0.5, 75±1)mmand P2 = (100.0±0.5, 17±1)mm.
The uncertainty of the y coordinate is 1 mm since near
the maximum |φ| changes slowly and takes the same
rounded value at three consecutive points. Additional
scans along vertical (horizontal) lines of intermediate x
(y) values could be done in order to find more points
along thewire projection, and to determine the equation
of the wire more precisely by means of a least-squares
fit. A typical set of values is given in Table 1. The fitted
equation of the wire is, respectively

y = ax+ b = −0.58x+ 75.3mm (4)

with estimated parameter uncertainties of δa ≈ 0.01 and
δb ≈ 0.4mm. Theparameter uncertainties scale as 1/

√
N ,

where N is the number of experimental points. A graph
of the wire projection in the xy-plane is shown in Fig. 2.
Since φ < 0 at I > 0, the positive I direction is from the
West to the East border, as shown in the graph.

Figure 2: xy-projection of the wire with indicated posi-
tive I direction.
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Task (b): Determination of h and BE

As follows from equations (1) and (3), the deflection an-
gle φ at a distance d from the horizontal projection of the
wire satisfies the equation

sinφ
sin(θ + φ)

=
µ0Ih

2πBE(d2 + h2)
. (5)

where the angle θ can be calculated from the slope coef-
ficient a of the wire:

θ = arctan(a) = −30.1◦ ± 0.4◦ (6)
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Table 2: Experimental data for the deflection angle φ vs.
current I at two different distances d.

(0 mm,75 mm); (20 mm,75 mm);
d1 = 0mm d2 = 10mm

I (A) φ (deg) U I (A) φ (deg) U
-5.0 25 -4.85 -5.0 15 -1.00
-4.0 24 -3.89 -4.0 13 -0.77
-3.0 23 -3.21 -3.0 11 -0.59
-2.0 20 -1.97 -2.0 8 -0.37
-1.0 15 -1.00 -1.0 5 -0.21
1.0 -75 1.00 1.0 -7 0.20
2.0 -126 1.99 2.0 -17 0.40
3.0 -137 3.03 3.0 -32 0.60
4.0 -141 4.02 4.0 -52 0.80
5.0 -143 4.94 5.0 -75 1.00
k1 = 1.01± 0.01 A k2 = 5.04± 0.03 A

The distance d between a point with coordinates (x, y)
and the wire projection can either be measured directly
on the graph in Fig. 2, or calculated as:

d = |(ax+ b− y) cos θ| ≈ 0.865|ax+ b− y| (7)

It follows from equations (5)–(7) that the unknown h and
BE could be determined if the deflection angle φ is mea-
sured in at least twopoints situated at different distances
from the wire. However, due to the random error, asso-
ciated with compass positioning and the rounding error
of the angle reading, such aminimalist approach is quite
inaccurate. Therefore, systematic measurements at sev-
eral distances d and/or different currents I , are neces-
sary to obtain sufficiently precise estimate for h and BE.
Two generic approaches could be followed, as well as a
combination between them.

Method I. Varying the current at fixed dis-
tances. By defining a new dimensionless variable
U = sinφ/sin(φ− 30.1◦), equation (5) is linearized as:

I = kU (8)

where the slope coefficient is:

k =
2πBE(d

2 + h2)

µ0h
(9)

Therefore, the unknown BE and h can be estimated af-
ter obtaining k for at least two different distances d from
the wire. Table 2 summarizes the results of measure-
ments at d1 = 0 mm (vertically above the wire) and at
d2 = 10 mm in a point with coordinates x = 20 mm and
y = 75mm. Figure 3 shows the correspondingU-I graphs,
and the estimated values of the slope coefficients are also
listed in the table 2.
It follows from equation (8) that:

BE
h

=
µ0(k2 − k1)

2π(d22 − d21)
= 8.06× 10−6 T/mm (10)

and

BEh =
µ0(d

2
2k1 − d21k2)

2π(d22 − d21)
= 1.98× 10−4 T ·mm (11)

Figure 3: U-I graphs for two different distances d from
the wire, and the corresponding linear fits.
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Alternatively, one can also use

h =

√
d22k1 − d21k2
k2 − k1

= 5.0mm. (12)

Finally, we obtain for the horizontal component of the
Earth’s magnetic induction:

BE = 4.0× 10−5 T (13)

and for the depth of the wire:

h = 5.0mm (14)

These estimates of h and BE coincide with accuracy of
two significant digits with the values preset in the simu-
lation program.

Method II. Fixed current, varying the distance.
Equation (5) can be rewritten in the form:

sin(θ + φ)

sinφ =
2πBE
µ0Ih

d2 +
2πBEh

µ0I
(15)

which can be linearized by setting new auxiliary vari-
ables: U = d2 and V = sin(φ− 30.1◦)/ sinφ. A typical
data set for this method is given in table 3, while the lin-
earized U-V plot is shown in Fig. 4.

Table 3: Experimental data for the deflection angle φ vs.
distance d at a fixed current I = 5.0 A.
x (mm) y (mm) d (mm) φ (deg) U (mm2) V

0 75 0 -143 0 0.203
2 75 1 -142 1 0.226
4 75 2 -142 4 0.226
6 75 3 -139 9 0.291
8 75 4 -138 16 0.311
10 75 5 -132 25 0.416
12 75 6 -128 36 0.475
14 75 7 -123 49 0.541
16 75 8 -111 64 0.674
18 75 9 -98 81 0.796
20 75 10 -79 100 0.963
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Figure 4: U-V graph obtained at a fixed current I = 5.0 A.
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From the fitting line we obtain:

V = 7.37× 10−3mm−2U + 0.208 (16)

which means 2πBEh/(µ0I) = 0.208 and 2πBE/(µ0Ih) =
7.37× 10−3mm−2. Thus, we obtain:

BE = 3.9× 10−5 T (17)

for the horizontal component of Earth’s magnetic induc-
tion, and

h = 5.3mm (18)

for the depth of the wire. These estimates are close to,
but less accurate than the values obtained by Method I.
The reason is that at small d, there is a large relative error
associated with wire positioning, i.e. with variable U . At
large d, however, the deflection angle is small, and there
is significant relative error, associated with the compass
reading, i.e. with V parameter.

Marking scheme

The basic equations could be stated in a separate section
of the solution, or spread over different parts of the so-
lution.

Theoretical background Points
T1 States explicitly or shows on a clear

graph that the magnetic needle
points along the total magnetic
induction.

0.1

T2 Derives eq. (1) or equivalent. 0.3
T3 Writes down the Ampere’s law (2). 0.2
T4 Derives eq. (3) or equivalent. 0.4
Total on Theory 1.0

In tasks A and B points for obtaining final results are
given on an additive basis. If a given quantity, say a-
parameter of the line, falls into the widest interval, a
minimum number of points is given. If the value, how-
ever, belongs to the subsequent narrower interval, an-
notated points are added to the points for the previous
interval, and so on, down to the narrowest interval.

Task A: Horizontal position of the
wire

Points

A1 State or use that the wire is located
where |φ| is maximal.

0.2

(state alternative method which al-
lows to find only a);

(0.1)

A2 Find points on the wire at most 2mm
away fromboth cross pointswith the
border.

0.2

A3 Find n points along the wire projec-
tion:
n = 3 or 4; 0.3
n ≥ 5. 0.5

A4 Draw wire projection on the graph:
plot all measured points or at least

5;
0.2

if a point drawn incorrectly; -0.1
line through the points; 0.2
axes labels and units; 0.1
axes tick marks with values; 0.1
correctly indicated positive I di-

rection.
0.3

A5 Equation of the line:
a within [-0.61;-0.55]; 0.1
a within [-0.60;-0.56]; +0.1
a within [-0.59;-0.57]; +0.3
b within [73.6;77.0] mm; 0.1
b within [74.6;76.0] mm; +0.1
b within [74.9;75.7] mm . +0.3

Correctly estimated uncertainties of
a and b.

0.2

Total on Task A 3.0

Since there are several approaches to the solution of
Task B, the subsequent marking scheme is unified in or-
der to fit all methods of solution. The data point is de-
fined as a single measurement of φ at given I , x, and y.
The data pointweightW is defined as a mark related to
the way, in which the measured data are presented and
treated numerically:

I , x, y, and the corresponding φ are
documented in a table with appropri-
ate number of digits.

0.1

The value of the distance d to the wire,
and the values of the auxiliary lineariz-
ing variables (if required by the solu-
tion) are calculated correctly and doc-
umented in the table.

0.1

MaximumW 0.2

The total mark for data recording and treatment (B2,
see the table below) scales linearly with the number of
data points N for up to N = 8. All data points after 8-th
do not contribute to the total mark on B2. Data points
measured in part A only count towards the mark of B2 if
it is stated in part B that they can be used for this part as
well, or if they are used implicitly.
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Task B: Finding BE and h Points
B1 Makes appropriate choice of auxil-

iary variables, which linearize eq.
(3) OR derives explicit expressions
for BE and h in terms of two mea-
sured angles φ at two different dis-
tances d (minimalist approach).

0.6

B2 Data recording and treatment:
min(N, 8)×W 1.6

B3 Organization of data in table(s):
Column titles 0.2
Units 0.2

B4 Extracting parameters
Graphical method:

For plotting n pointsm = min(n, 8) 0.1m
Coverage of at least 75% of the

graph window
0.2

Titles on axes 0.2
Units on axes 0.2
Tick marks with annotated values 0.2
Fitting line(s) is (are) drawnon the

graph(s)
0.5

Fitting line parameters are ex-
tracted and explicitly stated

0.5

Linear regression without graph:
using n pointsm = min(n, 8) 0.1m
correct fit 1.8

Averaging over n two-point mea-
surements: m = min(n, 13)

0.2m

B5 Final values of BE and h are calcu-
lated from the line parameters or
calculated from the results of a two-
point measurement (minimalist ap-
proach):
BE ∈ [3.7; 4.3]× 10−5 T 0.1
BE ∈ [3.8; 4.2]× 10−5 T +0.1
BE ∈ [3.9; 4.1]× 10−5 T +0.2
h ∈ [4.5; 5.5]mm 0.1
h ∈ [4.7; 5.3]mm +0.1
h ∈ [4.9; 5.1]mm +0.2

Total on Task B 6.0

e

E2: Hot Cylinder

Start the experimentwith the heater on full for 300Watts
and the thermostats located evenly across the length of
the rod and display the results every 100 seconds. Then
plan out the remainder of the experiment while wait-
ing, or do the other experiment. The rod reaches steady
state at about 600 seconds. Find the average tempera-
ture at the five thermostats by considering the last five
measurements; you will use this later.
The most accessible approach is then to study the

steady state behavior, the uniform temperature behav-
ior, the low temperature behavior, and the high temper-
ature behavior. Separating the low and high temper-
ature behaviors is useful because blackbody radiation
dominates at higher temperatures while convective loss
is most significant at near room temperature.
Finding the heat capacity is done by heating the rod at

a low enough rate for a short enough time so that heat
loss is as small as possible.
One possibility is to give a total of 1500 J of heat, but at

various power settings and various times, while keeping
the temperature as low as possible.
The average temperature of the rod is computed from

the five equally spaced points by applying Simpson’s
rule,

Tavg =
T1 + 4T2 + 2T3 + 4T4 + T5

12

Computing instead a direct average yields a +5% error.
It is found that the average temperature for heating

times less than 50 seconds is 55.4±0.5 °C, yielding specific
heat capacity of c = 114± 1 J/kgK.
Heat the rod full power for 600 seconds, and then al-

low to cool.
The rod temperature becomes uniform at about 700

seconds. Average the five points to obtain an average
rod temperature.
Linear cooling predicts a straight line graph for

ln(T − T0) versus t
The convective heat loss rate is then given by Aα(T −

T0), where A is the surface area of the rod. Do not forget
the end caps!
The radiative heat loss rate is βσ(T 4 − T 4

0 ) where σ =
5.67× 10−8W/(m2 K4). The radiative heat loss rate is
then given by Aβσ(T 4 − T 4

0 ).
Note that at temperatures close to T0 the radiative ex-

pression can be written as

Aβσ(T 4 − T 4
0 ) ≈ Aβσ4(T − T0)T

3
0

This means that the linear heat loss rate at tempera-
tures close to T0 is

A
(
α+ βσ4T 3

0

)
(T − T0)

For the uniform, low temperature cooling rod,

mc
dT
dt = −A

(
α+ βσ4T 3

0

)
(T − T0)
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The solution is of the form

T − T0 = Ce−Bt

where
B = A

α+ βσ4T 3
0

mc

On a log plot of ln(T − T0) as a function of time t, the
plot should be linear, with a slope given by

−Aα+ βσ4T 3
0

mc

It is also possible to plot dT/dt as a function of T − T0,
and the plot will be linear, with a slope also given by

−Aα+ βσ4T 3
0

mc

The slope in either case is found to be −1.78× 10−3 /s.

Note that only the last points (in red) were used to determine the linear cooling line. It is clearly a good fit
from t = 2000 s on, which corresponds to rod temperatures of T < 45 C.

To find the blackbody behavior we want to heat the
rod as much as possible such that the blackbody heating
becomes the dominant form of heat loss. Since the hot
rod is in steady state, the heat radiated must be equal to
300W. Use the results from the beginning.
The average temperature of the rod is computed from

the five equally spaced points by

Tavg =
T1 + 4T2 + 2T3 + 4T4 + T5

12
= 662 °C.

Computing a direct average yields a +1.5% error.
The average of T 4 is found from

T 4
avg =

T1
4 + 4T2

4 + 2T3
4 + 4T4

4 + T5
4

12
= 7.95× 1011 K4

Computing a direct average yields a +6.3% error.
The rate of linear temperature heat loss is found from

above to be

(−1.78× 10−3 /s)mc∆T = 59 W

The blackbody remainder term is then

300− 59 = 241 W,

and necessarily equals

Aβσ(T 4 − T 4
0 )−Aβσ4T 3

0 (T − T0),

where the second term reflects the fact that we had con-
sidered part of the blackbody behavior as being linear.
Solving, β = 0.304± 0.004.
Failing to subtract the second term would yield β =

0.28.
We are now in a position to find α, from

−Aα+ βσ4T 3
0

mc
= −1.78× 10−3 /s

which yields α = 2.93

Alternatively, for the uniform, high temperature cool-
ing rod,

mc
dT
dt ≈ −Aβσ

(
T 4 − T 4

0

)
as the radiative cooling effect will dominate.
On a plot of dT/dt as a function of T 4 − T 4

0 , the plot
should be linear, with a slope given by

−Aβσ
mc

The slope is found to be −7.8× 10−12 K3/s
Thismeans β/c = 3.25×10−3 kg K/J; this gives β = 0.36,

which is too high; ignoring the linear loss effects was sig-
nificant; as was previously seen, almost 20% of the heat
loss is from convection in this temperature range.
We can use the high temperature behavior to find the

heat flux through the center of the rod. The average of
T and T 4 on the non-heated half of the rod is 599 C and
5.8× 104 K4, yielding a heat loss at 112 W. That heat nec-
essarily came from the other side of the rod.
The temperature gradient is −898 K/m, so k =

397 W/mK. Don’t forget that the formula provided gave
the rate of heat flux, whichmeans thatwe needed to con-
sider the cross sectional area of the wire.

Marking scheme

Finding c, 2.5 pt total
Task Pts

2.1 Idea of heating the rod by a fixed Q. 0.6
2.2 Obtaining an equation relating the inserted

heat with the temperature change and c.
0.4

2.2 Heating the rod for a short duration for miti-
gating the effects of heat loss:
heating for less than 60 seconds. 0.2

2.3 Averaging the temperature of the rod:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.2

2.4 Checking more than one time value 0.2
2.5 Numerical value of c:

c within [103;123] J/(K kg); 0.3
c within [108;118] J/(K kg). 0.2
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Finding the linear heat loss, 2.0 pt total
Task Pts

3.1 Idea of looking at how the rod cools down at
the low temperature limit (with no heating).

0.2

3.2 Obtaining an equation for T as a function of
t in terms of α, β, and c:
linearize radiative loss around T0; 0.3
obtaining a differential equation for T (t); 0.1
solving the differential equation to get T (t). 0.2

3.3 Finding the average temperature at t:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

3.4 Graphically finding the slope (which is a
function of α, β, and c):
Plot 2 to 4 points in range T < 50C; 0.1
Plotting 5 or more points in range T < 50C; 0.1
axes labels and units; 0.1
axes tickmarks with values. 0.1

3.5 Numerical value of the slope:
slope within [−1.58× 10−3,−1.98× 10−3]; 0.2
slope within [−1.68× 10−3,−1.88× 10−3]; 0.1

Finding β, 2.5 pt total
Task Pts

4.1 Idea of looking at the steady state at the high
temperature limit.

0.2

4.2 Writing down the heat balance:
accounting for the area of the end caps; 0.1
accounting for the linear contribution to the
heat loss by removing theα dependence from
the previously found slope;

0.2

final expression for β in terms of mean value
of T and T 4 of the steady state. Making amis-
take in the previous parts shouldn’t be pe-
nalised here.

0.2

4.3 Measurements:
Heating power sufficiently big such that
the steady state temperature is bigger than
500 °C;

0.1

Waiting for at least 300s to reach the steady
state

0.1

Waiting for at least 600s to reach the steady
state

0.1

4.4 Finding the average temperature:
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

4.5 Finding the average T 4 (for calculating aver-
age radiative loss):
averaging over one to three points; 0.1
Use Simpson rule (or equivalent) 0.3
averaging over four or more points; 0.1

4.6 Numerical value of β:
β within [0.25;0.35]; 0.3
β within [0.28;0.32]. 0.2

Finding α, 0.5 pt total
Task Pts

5.1 Obtaining an expression for α in terms of the
slope γ.

0.1

5.2 Numerical value of α:
α within [2.33;3.23]W/(m2 K); 0.2
α within [2.53;3.03]W/(m2 K). 0.2

Finding k, 2.5 pt total
Task Pts

6.1 Idea of looking at the flux frompart of the rod
to the other

0.4

6.2 Theory:
Expressing heat flux in terms of k and the
temperature gradient;

0.2

Expressing heat flux in terms of the average
T , T 4, and the heating power of one of the
halves of the rod;

0.4

accounting for the area of the end caps. 0.1
6.3 Finding the average temperature of one of

the halves:
averaging over one to three points; 0.1
averaging over four or more points. No
marks if points not equally spaced and aver-
age doesn’t account for the unevenness;

0.1

6.4 Finding the average T 4 (for calculating aver-
age radiative loss):
averaging over one to three points; 0.1
averaging over four or more points; 0.1

6.5 Finding the temperature gradient:
Using at least two points for the gradient cal-
culation;

0.1

Using (f(x + h) − f(x − h))/2h for numerical
derivative;

0.2

Having the range of points used for gradient
calculations not farther apart than 5 cm;

0.1

Having the range of points used for gradient
calculations not closer than 1 cm;

0.1

6.5 Numerical value of k:
k within [328;488]W/(mK); 0.3
k within [378;438]W/(mK). 0.2

Some grading notes:
• Failure to record and report the location of the sensors
will result in a penalty of -1.0 pt for each occurrence!.
It is acceptable to clearly state the location of the sen-
sors in one part of the report, and thenmentioning that
they are not moved during the experiment.

• When computing spatial averages, if the spacing be-
tween thermometers is not uniform, the averaging
techniques must use appropriate weighting, or there
is a penalty of -0.1 pt for each occurrence!

• When computing spatial averages, if the rod is not
mostly uniform in temperature, a Simpson’s Rule tech-
nique or equivalent must be used to obtain the 0.3 pts.
If instead all of the temperatures are within two error
limits, then Simpson is not required to obtain the 0.3
pt.

• Any numerical derivatives must use the symmetric
form

f ′(x) ≈ (f(x+ h)− f(x− h))/2h

or some equivalent, or better, method.


