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General guidelines for marking

• Granularity for marks is 0.1 p.
• A simple numerical error resulting from a typo is punished by
0.2 p unless the grading scheme explicitly says otherwise.

• Errorswhich cause dimensionallywrong results are punished
by at least 50% of themarks unless the grading scheme explic-
itly says otherwise.

• Propagating errors are not punished repeatedly unless they
either lead to considerable simplifications or wrong results
whose validity can easily be checked later.

T1: Floating cylinder

Solution I: energetic approach

Denote the density of the liquid by ϱ, so the density of the cylin-
der is γϱ. In equilibrium (i.e. when the net force acting on the
cylinder is zero) the immersed part of the cylinder has height
γh.

Consider the system in a moment when the cylinder is dis-
placed by distance x1 downward and moves down with veloc-
ity v1. As a result of the motion of cylinder the liquid level rises
by some height x2, and the liquid flows in the gap between the
cylinder and beaker with some velocity v2 upwards (see Fig. 1).

Fig. 1

The relationbetween the aforementioneddisplacements andve-
locities are given by the continuity law:

x1s = x2(S − s), v1s = v2(S − s) .

In the following we express the potential and kinetic energy of
the system. Compared to the equilibrium position the cylinder
of mass γϱsh sunk by x1, while the potential energy change
caused by the redistribution of liquid can be imagined as the
center of mass of liquid with mass ϱsx1 rises by distance γh+
x1/2 + x2/2 . Taken the potential energy in the equilibrium
state to be zero, the potential energy in the state indicated in the
right figure can be written as

Epot = −γϱshgx1 + ϱsx1g

(
γh+

x1 + x2
2

)
.

After opening the bracket the first two terms cancel each other:

Epot =
1

2
ϱsgx1(x1 + x2) .

After expressingx2 fromcontinuity lawand some simplification
we get a quadratic expression for the potential energy:

Epot =
1

2
ϱsgx1

(
x1 +

s

S − s
x1

)
=

1

2
ϱ

sS

S − s
gx21 .

Now let us calculate the kinetic energy of the system. The con-
tribution from the cylinder is straightforward, γϱshv21/2, but
the motion of the liquid is more complicated.

Note. We may notice that since s/(S − s) = 50, the speed v2 of
the liquid in the narrow gap is 50 times larger than the typical speed
of the liquid below the cylinder (which can be estimated to be in the
range of v1). And while the mass of the liquid below the cylinder is
much larger than themass of liquid inside the gap (the ratio is ca. 25 if
the „few centimeters” in the problem text is taken to be 3.5 cm), the ki-
netic energy is proportional to the square of the velocity, so the kinetic
energy of the liquid inside the gap is roughly 100 times larger than the
kinetic energy of the liquid below the cylinder.

Since the kinetic energy of the liquid below the cylinder is
negligible, we can write the total kinetic energy of the system
as:

Ekin =
1

2
γϱshv21︸ ︷︷ ︸
cylinder

+
1

2
ϱ(S − s) (γh+ x1 + x2) v

2
2︸ ︷︷ ︸

liquid

.

Here x1, x2 ≪ γh, so we shall keep only the term containing
γh in the second bracket:

Ekin =
1

2
γϱshv21 +

1

2
ϱ(S − s)γhv22

Expressing v2 from continuity law gives the following:

Ekin =
1

2
γϱshv21 +

1

2
ϱγh

s2

S − s
v21 =

1

2
ϱγh

sS

S − s
v21 .

The potential and kinetic energies can be written in the form

Epot =
1

2
keff x

2
1 , Ekin =

1

2
meff v

2
1 ,

where the effective spring constant and effectivemass are given
by

keff = ϱ
sS

S − s
g , meff = ϱγh

sS

S − s
.

So the oscillation is indeed harmonic, thus the angular fre-
quency and the period are:

ω =

√
keff
meff

=

√
g

γh
, T = 2π

√
γh

g
= 0.53 s .

Note. The static restoring force, acting on the cylinder is due to the
change (relative to the equilibrium position) of the hydrostatic pres-
sure at its lower base:

F = −sρg(x1 + x2) = − sS

S − s
ρgx1.

This immediately gives effective stiffness of the system keff = sS
S−sρg.

Alternatively, onemaywish to integrate
∫
Fdx1 to get the potential

energy

Epot =
sS

S − s

ρg

2
x2
1.
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Solution II: dynamical approach

When the cylinder is displaced from its equilibrium position
downwards by distance x1, the net restoring force (pointing up)
can be calculated as the sum of the weight of the cylinder and
the force from the difference of pressures at the top (p0) and bot-
tom (p) of the cylinder. As a result of the net force, the cylinder
accelerates upwards with a1, and at the same time, the liquid lo-
cated in the gap between the cylinder and the wall of the beaker
accelerates downwith a2. The relation between themagnitudes
of a1 and a2 is given by the continuity law:

sa1 = (S − s)a2 .

Fig. 2

If the liquid in the gap was not accelerating, the pressure differ-
ence p − p0 would be equal to the hydrostatic pressure of the
liquid column in the gap. Due to the acceleration of the liquid,
p− p0 can be expressed from Newton’s 2nd law applied for the
liquid column of unit area located in the gap:

p0 − p+ ϱg(γh+ x1 + x2) = ϱ(γh+ x1 + x2)a2 ,

where we used the notations of Solution I, and the downward
direction was taken as positive.

Newton’s 2nd law for the cylinder reads as

(p− p0)s− γϱshg = γϱsha1 .

After expressing p − p0 from the previous equation, and then
substituting it here we get:

ϱg(γh+x1+x2)s−ϱ(γh+x1+x2)a2s−γϱshg = γϱsha1 .

Since the amplitude of the liquid level is small, the terms con-
taining a2x1 and a2x2 can be neglected. After rearranging we
get:

ϱgs(x1 + x2) = γϱsh(a1 + a2) .

Using the relations between the displacements and accelera-
tions we finally get:

a1 =
g

γh
x1 .

Taking into account the opposite directions of x1 and a1, this
is the dynamical condition of a simple harmonic motion with
angular frequency and period

ω =

√
g

γh
, T = 2π

√
γh

g
= 0.53 s .

Note. In this solution we assumed that the pressure p is constant
throughout the bottom surface of the cylinder. This assumption is
equivalent with saying that the horizontal acceleration of the liquid
below the cylinder at every point is much smaller than a2, which is
reasonable.

Marking scheme

All solutions should be graded according to only one marking scheme
(either energetical or dynamical). If the student used both ideas, that
marking scheme should be used which results in a higher score.

Solution I: energetic solution pts
i Height of submerged part of cylinder in equilib-

rium is γh.
0.5

ii Realizing that the kinetic energy of water is impor-
tant

1.0

iii Realizing that the kinetic energy of liquid below the
cylinder is negligible

1.5

iv Expressing the kinetic energy of liquid inside the
gap as a function of velocity of cylinder.

2.5

v Potential energy change of liquid as a function of
the small displacement of cylinder

1.0

vi Potential energy change (0.5 p) and kinetic energy
change of cylinder (0.5 p)

1.0

vii Continuity law either for displacements or veloci-
ties (only 0.5 p if the factor is S/(S − s))

1.0

viii Expressing ω from the formulas for Epot and Ekin

(ω =
√
keff/meff or equivalent).

1.0

ix T = 2π/ω 0.3
x Correct substitution of values, final result 0.2

Total number of points 10.0

Solution II: dynamical solution pts
I Height of submerged part of cylinder in equilib-

rium is γh
0.5

II Realizing that the pressure difference between top
and bottom of the cylinder is not ϱg × height diff.

1.0

III Neglecting the motion of water below the cylinder
but not on the sides

1.5

IV Newton’s 2nd law for liquid in the gapwith nonzero
acceleration. (0 p for p− p0 = ϱg × height diff.)

2.5

V Newton’s 2nd law for cylinder (still full mark if II
was not realized but p− p0 was used properly)

1.0

VI Using the change inwater level inNewton’s 2nd law 1.0
VII Continuity law either for displacements or acceler-

ations (only 0.5 p if the factor is S/(S − s))
1.0

VIII Concluding a linear relation between acceleration
and displacement of cylinder

0.5

IX Expressing ω from the dynamical equations (ex-
pressing ω =

√
keff/meff correctly or equivalent).

0.5

X T = 2π/ω 0.3
XI Correct substitution of values, final result 0.2

Total number of points 10.0
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T2: Thermal oscillations

Part (a): Critical voltages

The power heating the resistor is Pel = V 2/Rj . The thermal
equilibrium is reached when Pel = P = α(Teq − T0). To
avoid oscillations, the equilibrium temperature Teq must satisfy
Teq < Tc if R = R1 and Teq > Tc if R = R2. Solving for V ,
we have

V =
√
Rjα(Teq − T0). (1)

The critical values therefore are

V1 =
√

R1α(Tc − T0) and V2 =
√

R2α(Tc − T0). (2)

Part (b): Temperature behaviour

In the oscillating regime, we have a time-dependent current
I(t). The power dissipated over the resistor is Pel(t) =
R(t)I(t)2. By assumption (ii), we may assume that the ther-
mal equilibrium is reached very fast, i.e. Pel(t) = P (t). The
temperature T (t) is therefore determined by the current via

T (t) = T0 +
R(t)I(t)2

α
. (3)

If the resistance has value R1, the current will increase, try-
ing to reach J1 = V /R1. The difference I(t) − V /R1 will
decay exponentially, with characteristic time L/R1. The phase
transition occurs once the critical current

I1 =

√
α(Tc − T0)

R1

is reached. After the phase transition, the current will decrease,
approaching the new equilibrium value J2 = V /R2. Again,
I(t)− V /R2 will decay exponentially with characteristic time
L/R2, until the critical current

I2 =

√
α(Tc − T0)

R2

is reached. This behaviour is shown in Fig. 1.

I1

I2

J2

J1

I

t

R
R2

R1

t1 t2

Fig. 1

Together with (3), we see that the temperature behaves like
in Figure 2.

Tc

T

t

R
R2

R1

Fig. 2

The maximum and minimum temperatures will be attained
just after the phase transitions occur. We obtain that

Tmax − T0

Tmin − T0
=

R2I
2
1

R1I22
=

R2
2

R2
1

. (4)

Part (c): Period of oscillations

If the phase transition occurs at t = 0, with the resistance
changing fromRj′ toRj , the current is given by

I(t) =
V

Rj
+

(
Ij′ −

V

Rj

)
e−Rjt/L (5)

until the next phase transition occurs when I(tj) = Ij . Hence,
the period is

t1+t2 =
L

R1
ln
(
I2 − V /R1

I1 − V /R1

)
+

L

R2
ln
(
I1 − V /R2

I2 − V /R2

)
(6)

Inserting the relations R2 = ηR1 and V =
√
V1V2 =

η1/4
√
R1α(Tc − T0), we obtain the period

L

R1
ln
(
7

4

)
+

L

R2
ln (7) =

L

R1

(
ln
(
7

4

)
+

1

16
ln (7)

)
≈ 0.68

L

R1
. (7)
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Marking scheme

Task (a): Critical voltages pts
a1 Formula for the power dissipation Pel = V 2/Rj . 0.5
a2 Relating the power dissipation to the tempera-

ture of the resistor in oscillations-free stationary
regime, Pel = P = α(Teq − T0)

0.5

a3 Expressing the voltage in terms of the temperature
if the thermal equilibriumwere to be reached,V =√
Rjα(Teq − T0). Subtract 0.1 pts if V is not ex-

pressed explicitly.

0.5

a4 Realising that oscillations will not happen if V >√
R2α(Teq − T0) or V <

√
R1α(Teq − T0). No

marks if only one inequality is obtained (but no
subtractions because of that in a3 - in most cases
thosewho got correct expression for one of the volt-
ages but has a wrong or missing expression for the
other gets full marks for a1-a3, and 0 pts for a4).

0.5

Total number of points for Task (a) 2.0

Task (b): Temperature behavior pts
b1 Realising that the I − t curve is made of segments

of exponents, joined without discontinuities. Par-
tial credit of 0.5 pts if it is made of curved segments
for which it is not clear that these are exponents, or
if these are growing exponents, but which are con-
nected continuously with a discontinuous deriva-
tive dI

dt . No points if I(t) is discontinuous, or if only
one segment of an exponent is shown. Full marks
can be given if there is no I−t graph, but theT −t
graph is made of the segments of vanishing expo-
nents, connected with temperature jumps in a cor-
rect direction, and a partial credit of 0.5 pts if the
segments of theT−t are either growing exponents
or curves of unclear shape, still connected so that it
would correspond to a continuous I(t)-curve with
a discontinuous derivative. Partial credit of 0.5 pts
is given if there is no I − t-curve shown, but V − t
curve is shown to be made of decaying exponential
segments, connected with jumps

1.0

b2 Realising that (i) one of these exponents is in a form
a1 − b1e−t/τ1 and (ii) the other one — in a form
a2 + b2e−t/τ2 where (iii) the a1 > a2 and (iv)
τ1 > τ2. It is not necessary to write down these
inequalities mathematically — it is enough it these
are clear from a sketch. Inequality τ1 > τ2 does
not need to be written if expressions for τ1 and τ2
are given. Full marks can be given if I − t graph
is missing, but T − t graph is correct and has all
the features as described in b6. Full marks can be
also given if the correct exponential forms are doc-
umented not here, but in part c.

0.3+
0.3+
0.3+
0.1

b3 Realising that this exponential behaviour breaks
downonce the critical temperature is reached. This
does not need to be written specifically if the jumps
in T − t graph happen at T = Tc. No marks are
given if there is no clear discontinuity of T at Tc

and/or if there are discontinuities of T (t) or dT
dt at

some other values of T .

1.0

b4 Relating the critical temperature to the correspond-
ing critical current Ij

0.5

b5 Realising that the temperature curve T (t) is re-

lated to I(t)-curve, T (t) = T0 +
R(t)I(t)2

α

0.5

b6 Drawing a correct final sketch which has the fol-
lowing features: exponential segments showing an
exponential relaxation of T (t) in a right direction
both whenR = R1 and whenR = R2; jumps in a
right direction each time when T reaches Tc (sub-
tract 0.2 for each missing label on the axes and also
if the temperature jumps do not occur at the same
value of T ). No points are given if any of the listed
features is missing.

1.0

b7 Using the feature from the graph that the maximal
and minimal temperatures are taken immediately
after a phase transition when I = I1 and I = I2

0.5

b8 Correct answer for the ratio of the maximal and
minimal temperatures. Only 0.3 pts if the answer
is not simplified.

0.5

Total number of points for Task (b) 6.0

Task (c): Period of oscillations pts
c1 Expressing the duration of each of the exponential

segments as tj = L
Rj

ln ∆Ij,i
∆Ij,f

where ∆Ij,i and
∆Ij,f denote the corresponding initial andfinal de-
partures of the current from the equilibrium value
(fullmarks to be given if thefinal answer is correct).
Subtract 0.2 for each incorrect ∆Ij,i and ∆Ij,f ,
i = 1, 2 (this means that if none of them is cor-
rect, only 0.2 pts are given for c1). 60% of points if
tj is related to ∆Ij,i and ∆Ij,f correctly, but not
expressed explicitly.

0.5+
0.5

c2 Correct first and second terms in the final answer
(40% of it if the answer is not simplified)

0.5+
0.5

Total number of points for Task (c) 2.0
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T3: Dipole in a magnetic field

Part (a): Uniform linear motion

Lorentz forces acting on the charges:

F⃗+ = qv⃗+ × B⃗ = q(v⃗ + ω⃗ × r⃗)× B⃗,

F⃗− = (−q)v⃗− × B⃗ = (−q)(v⃗ − ω⃗ × r⃗)× B⃗,

where r⃗ is a vector from the center of mass to the position of the
positive charge.

−−−

+++

v⃗

ω

v⃗+ = v⃗ + ω⃗ × r⃗

v⃗− = v⃗ − ω⃗ × r⃗ r⃗

According to Newton’s first law, the center-of-mass C of the
dipole will move with constant velocity provided that the net
force:

F⃗ = F⃗+ + F⃗− = q(v⃗+ − v⃗−)× B⃗, (8)

acting on the dipole, is zero. Since v⃗+ ,⃗v− and B⃗ are perpendic-
ular, we require v⃗+ = v⃗−. It means that dipole does not rotate:
ω = ω0 = 0.

The pure translation, however, is possible if the pair of forces
F⃗+, F⃗−, has zero torque aboutC :

τ⃗ = r⃗ × F⃗+ − r⃗ × F⃗− = 2qr⃗ × (v⃗ × B⃗) =

2q
(
v⃗(r⃗ · B⃗)− B⃗(r⃗ · v⃗)

)
= −2qB⃗(r⃗ · v⃗). (9)

We conclude that scalar product is zero only when v⃗ ⊥ r⃗, i.e.
the initial velocity should be parallel to Y direction.

In summary, the dipole will move uniformly along Y if, and
only if, v⃗0∥Y and ω0 = 0.

Part (b): Circular motion

The net force can be calculated as:

F⃗ = F⃗+ + F⃗− = 2q(ω⃗ × r⃗)× B⃗ =

− 2q
(
ω⃗(B⃗ · r⃗)− r⃗(B⃗ · ω⃗)

)
= 2qBωr⃗ = Bωp⃗, (10)

where p⃗ is a dipole moment (|p⃗| = qd = 2qr and the direction
aligns with r⃗).

When C orbits a circle, F⃗ acts as a centripetal force, i.e. it
points to the center of the circle. Since F⃗∥p⃗, the dipole is always
in linewith the center of the orbit. Therefore, the orbital angular
velocity of C is equal to the angular velocity of rotation of the
dipole aboutC .

−−−
+++v⃗

F⃗

(xc, yc)

The magnitude of the orbital velocity is:

v0 = |ω0|Rc

From Newton’s second law, and accounting that the total mass
of the dipole is 2m:

2mv20
Rc

=
pBv0
Rc

,

i.e. the magnitude of velocity is:

v0 =
pB

2m
=

qBd

2m

and the radius of the orbit is:

Rc =
v0
|ω0|

=
qBd

2m|ω0|

The coordinates of the center of the circle are:

(xc, yc) = (±Rc, 0)

where the “+”sign corresponds to ω0 > 0, i.e. counter-
clockwise rotation, and the“−”sign—to clockwise rotation.
In either case, the initial velocity should point to the negative Y
direction:

v⃗0 = −qdB

2m
ȷ̂.

Part (c): Reversal of the dipole

In (10) we have shown that the net force:

F⃗ = 2q(ω⃗ × r⃗)× B⃗ = (ω⃗ × p⃗)× B⃗.

Since the dipole moment p⃗ rotates with angular velocity ω⃗, its
time derivative: dp⃗

dt
= ω⃗ × p⃗.

From Newton’s second law:

2m
dv⃗

dt
= F⃗ =

dp⃗

dt
× B⃗.

By integrating the equation, we arrive at an additional conserva-
tion law in the system (conservation of the so called “generalized
momentum”):

2mv⃗ − p⃗× B⃗ = const

Thus, if p⃗ has reversed its direction from p⃗0 to p⃗1 = −p⃗0,
then the velocity:

v⃗1 = v⃗0 +
(p⃗1 − p⃗0)× B⃗

2m
= − p⃗0 × B⃗

m
. (11)
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Since the magnetic field does not perform work on moving
electric charges, the kinetic energy of the dipole is conserved:

I

2
ω2
0 =

I

2
ω2
1 +

2m

2
v21,

Here, I = 2 × m(d/2)2 = md2/2 is the moment of inertia
of the dipole with respect to its center-of-mass. Since v1 doesn’t
depend on angular velocities, ω0 is minimal when ω1 = 0. Fi-
nally,

ωmin = v1

√
2m

I
=

p0B

m

√
4

d2
=

2qB

m

Alternatively, we can introduce θ to be the angle between the
dipole moment and the axisX (θ0 = 0) and rewrite the equa-
tions of translational motion in coordinates using ω = θ̇:

v̇x = θ̇
qBd

2m
cos θ, v̇y = θ̇

qBd

2m
sin θ.

By integrating these equations, given zero initial velocity, we
find how velocity depends on θ:

vx =
qBd

2m
sin θ, vy =

qBd

2m
(1− cos θ).

Using the expression (9) for the torque, we can write the equa-
tion of rotational motion as:

Iθ̈ = τ = −2qB(rxvx + ryvy) = −q2B2d2

2m
sin θ,

θ̈ +
q2B2

m2
sin θ = 0, (12)

This is the equation of a mathematical pendulum of length L in
gravitational field g = L(qB/m)2. And the equivalent ques-
tion becomes what is the minimal push θ̇0 required in the bot-
tom position for the pendulum to reach the top position. Kinetic
energy of the pendulumK = 1

2mL2θ̇20 will be transfered to the
potential energy U = 2mgL, from which we find:

ωmin = θ̇0 =

√
4
g

L
= 2

qB

m
.

Note. Due to symmetry, both clockwise and counter-
clockwise initial rotation with absolute value of |ω0| will work.

Part (d): Trajectory asymptote

If dipole’s trajectory has an asymptote, then its movement along
the asymptote is uniform. Indeed, if there is a linearmotionwith
acceleration, the dipole p⃗ should be always aligned with the di-
rection ofmotion, thus, not rotating. and as we found in part (a),
the absence of rotation can only bemaintained if v⃗ = const and
v⃗ ⊥ p⃗.

The uniform linear motion requires ω = 0, and this hap-
pens in the limit when the orientation is reversed p⃗1 = −p⃗0.
According to (11), in the limit, the dipole is travelling with the
speed v⃗1 = p0Bȷ̂/m. Thus the asymptote is parallel to Y axis:
x = D (for counter-clockwise initial rotation).

X

Y
v1 v1

D

If R⃗+ and R⃗− are absolute positions of the charges, we can
write equation for the angular momentum around the origin
LO:

dL⃗O

dt
= R⃗+ × (q

˙⃗
R+ × B⃗) + R⃗− × (−q

˙⃗
R− × B⃗) =

− qB⃗
(
R⃗+ · ˙⃗

R+ − R⃗− · ˙⃗
R−

)
= −qB⃗

2

d

dt

(
R2

+ −R2
−
)
.

After integration, we find onemore conservation law (conser-
vation of the “generalized angular momentum”):

L⃗O+
qB⃗

2

(
R2

+ −R2
−
)
= L⃗O+

qB⃗

2

(
(R⃗+ + R⃗−) · (R⃗+ − R⃗−)

)
= L⃗O + B⃗(R⃗ · p⃗) = const,

where R⃗ = 1
2(R⃗+ + R⃗−) is the position of center of mass. We

also used the fact that q(R⃗+ − R⃗−) = 2qr⃗ = p⃗.

Initially, centre of mass coincides with origin (R⃗0 = 0):

LO(0) = Iω0 = 2m
d2

4
2
qB

m
= qBd2. (13)

At asymptote, the dipole has reversed direction p⃗1 = −p⃗0 and
charges are travelling along parallel lines x = D ± r with the
velocity v⃗1:

LO(∞)+B(R⃗1 ·p⃗1) = m(D−r)v1+m(D+r)v1−BDp0

= 2mD
p0B

m
−BDp0 = BDp0 = BDqd. (14)

Since (13) equals (14), we conclude thatD = d.
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We can arrive to the same conclusion differently. Notice that
we are interested in the x coordinate ofC at infinity:

D = x∞ =

∫ ∞

0
vx dt =

qBd

2m

∫ ∞

0
sin θ dt.

From (12), we can express sin θ:∫ ∞

0
sin θ dt = − m2

q2B2

∫ ∞

0
θ̈ dt =

− m2

q2B2
(θ̇1 − θ̇0) =

m2

q2B2
ωmin =

2m

qB
.

Finally,

D =
qBd

2m

2m

qB
= d.

Note. If initial rotation is clockwise (ω0 < 0), the asymptote
has an equationx = −D, but the distance to the origin remains
the same.

Marking scheme

Part (a): Uniform linear motion pts
a1 Rationalizes that the net force on the dipole is zero

if the two poles move with equal velocities; Just ar-
gument v = const ⇒

∑
F⃗ = 0 is 0 pts.

0.7

a2 Concludes that ω0 = 0. 0.3
a3 Using the argument of zero torque, concludes that

the velocity should be perpendicular to the dipole;
Just argument ω = const = 0 ⇒ τ⃗ = 0 : 0.4 pts

0.7

a4 States explicitly that v⃗0∥Y (or⊥ X). 0.3
Total number of points for part (a) 2.0

Part (b): Circular motion pts
b1 Derives expression for the magnitude of the net

force on the dipole in terms of ω AND states explic-
itly that it is parallel to the dipole axis OR derives
one single vector expression.

0.9

b2 Realizes (drawing or explicit statement) that F⃗ and
the dipole axis point to the center of the orbit, and
concludes thatω0 is equal to the orbital angular ve-
locity.

0.5

b3 Writes down Newton’s second law for the circular
motion.

0.5

b4 Makes use of the relation v0 = |ω|Rc. 0.2
b5 Derives expression for v0 and specifies its direction

(drawing or statement) OR derives one single vec-
tor expression for v⃗0; if direction is wrong or miss-
ing 0.2 pts

0.3

b6 Derives explicitly Rc = qbD/(2m|ω0|). If | · | is
omitted, still full points.

0.3

b7 Writes down the coordinates of the center of the or-
bit; 0.2 for correct xc (including sign), 0.1 for cor-
rect yc; xc = qbD/(2mω0) is a correct answer

0.3

Total number of points for part (b) 3.0

Only one of the grading tables should be used for part (c), the one
which results in a higher score.

Part (c): Reversal of the dipole pts
c1 By integrating the equation(s) of motion derives a
“generalized momentum”conservation law – a re-
lationship between the linearmomentum2mv⃗ and
the dipole moment p⃗ – in vector form OR for the
Cartesian components.

1.5

c2 States explicitly that the kinetic energy of the dipole
conserves.

0.3

c3 Writes down explicit expression for the kinetic en-
ergy in terms of angular velocity and linear velocity
of the center of mass.

0.5

c4 Realizes that ω0 is minimal when ω1 = 0 in the
reversed position.

0.2

c5 By using the“generalized momentum”conserva-
tion, derives explicit expression for the linear ve-
locity v1.

0.5

c6 Applies the conservation of energy to find relation-
ship between v1 and ωmin

0.8

c7 Derives the final expression for ωmin 0.2
Total number of points for part (c) 4.0

Alternative approach: pendulum analogy
Part (c): Reversal of the dipole pts
c1 Derives the expression τ = −B(p⃗ · v⃗) for the

torque. Even if the derivation has been made in
parts (a) or (b), the points should be assigned to
Task (c); If term (B⃗ · p⃗) is not cancelled, still full
points

0.5

c2 By integrating the equations of motion, expresses
vx and vy in terms of θ.

1.5

c3 Writes down the equation of rotational motion in
terms of sin θ.

0.5

c4 States that the angular dynamics of the dipole is
equivalent to a large-amplitude oscillation of a
mathematical pendulum.

0.3

c5 Realizes that ω0 is minimal when ω1 = 0 in the
reversed position.

0.2

c6 Applies the conservation of energy to the ”equiva-
lent pendulum”.

0.8

c7 Derives the final expression for ωmin 0.2
Total number of points for part (c) 4.0

Part (d): Trajectory asymptote pts
d1 Rationalizes that the asymptote is parallel to Y , i.e.

x = ±D.
0.1

d2 Rationalizes that asymptotically the motion is lin-
ear uniform

0.2

d3 Either finds conservation law L⃗O + B⃗(R⃗ · p⃗) OR
writes x∞ as integral of vx (with explicit expres-
sion for vx) as a method to findD.

0.3

d4 Correctly computes generalized angular momen-
tum at 0 and∞ OR uses sin θ ∝ θ̈ in integral.

0.2

d5 Concludes thatD = d. 0.2
Total number of points for part (d) 1.0
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E1: Colour and temperature

Theory
The infrared thermometer cannot be used to measure
the filament temperature for several reasons – the range
of the IR thermometer (stated on the instrument) only
goes up to 500 °C. The filament is also too small to be the
only thing measured. IR opacity of the glass bulb is also
not guaranteed. Therefore, the only way to measure the
temperature is indirectly through the colour index, for
which the relation to temperature is provided.
Wien’s displacement law suggests that at lower tem-

peratures, the light will contain more red component
than green and blue, while at higher temperatures, the
green and then the blue will increase faster than red,
leading to increasing ratios G/R, B/R and B/G. We
must, however, consider, which pair of filters will be the
most suitable choice.
The values measured through different filters depend

on the spectral response of each filter, including its over-
all opacity. It also depends on the sensitivity of the light
meter to each wavelength. Instead of theoretical predic-
tions, we are given reference measurements at known
temperatures. If we plot the ratios for all three pairs, we
observe thatB/G is the least suitable, as it changesmuch
less with temperature, compared to the other two. B/R
and G/R are comparable, but the blue filter has lower
transmittance, whichwill lead to lower accuracy (higher
relative error).
Any pair of filters is a valid choice to proceed with the

measurements, but will affect the end accuracy. Averag-
ing the results is also an option, but including B/G com-
bination may still reduce the accuracy of the end result.
To use the plot for converting the colour index to tem-

perature, we need a trend line. A linear trend is enough
to cover most of the range, except at lower tempera-
tures, where the relationship tapers off. We can extend
the range by combining two trends across the range, or
to draw a smooth curve by hand. Zig-zag interpolation
is less suitable due to scatter in the reference measure-
ments.

Figure 1: Three choices of the colour index based on
each pair of filters. Linear fits for the top part of the
range are shown, and a smooth curve.
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Using the absolute values from the table instead of
ratios is not correct, as the intrinsic luminous flux of

the light source and the measurement distance are not
given.

Experiment

For the measurement of the power dependence of the
temperature, we will read out the voltage and current
from the power supply. To sample the expected curve
of the T (P ) relationship, we must sample it sufficiently
well, especially at lower powers where the temperature
changes more quickly. We suggest sampling at least
8 powers/temperatures to cover the relationship more
precisely and distinguish outliers from reliable mea-
surements. For each power setting, we must measure
the illuminance through the chosen filters by covering
the sensor of the light meter with a filter. Covering the
light meter filters all the light, including the light re-
flected from the walls and the floor, leading to a better
measurement. Placing the filter next to the light source
also introduces the risk of burning the filter. Planning
ahead, we can simultaneouslymeasure the illuminances
without a filter, needed in Task 2.
Each colour index is then converted to a tempera-

ture by reading out from the calibration graph. We can
also estimate the relationship by employing the Stefan-
Boltzman law if we neglect other losses and the contri-
bution of the ambient temperature:

T ∝ 4
√
P . (1)

According to measurements with multiple light bulbs in
different environments, the fit is

T = (1220KW−1/4 ± 20KW−1/4)
4
√
P , (2)

which is used as a baseline for determining the RMS of
students’ measurements.
The background illuminance must be measured

through all filters – it is most likely zero, but a good
experimentalist must check, and if significant, it must
be subtracted from measurements. This is also a way
for us to detect if they left their desk lamp on – if the
background differs significantly from the rest of the
contestants.
Thedistance between the light source and the lightme-

ter should be short enough to enable accurate measure-
ments at lower powers. Distance can also be different for
different power ranges, but caremust be taken, as the ef-
fect of the finite size of the filament may play a role, as
well as the changing reflections from surroundings and
from the top of the light stand.

Marking scheme

General guidelines for marking in all tasks
• Granularity for marks is 0.1 p.
• measurements/results given with inappropriate num-
ber of significant figures may get deducted 0.1 p. (rule
of no propagating error applies)

• A simple numerical error resulting from a typo is pun-
ished by 0.1 p unless the grading scheme explicitly says
otherwise.
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Figure 2: Dependence of the temperature on the
power with a superimposed prediction from the Stefan-
Boltzman law. Shown is a comparison measured at two
distances and using two combinations of filters. We see
the trends are comparable and remain within ±100K,
and RMS is around ±40K based on multiple measure-
ments.
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• Errors in theoretical derivations which cause dimen-
sionally wrong results are punished by at least 50% of
themarks for the derivationunless the grading scheme
explicitly says otherwise.

• Propagating errors are not punished repeatedly un-
less they either lead to considerable simplifications or
wrong results whose validity can easily be checked
later.

• Negative points cannot decrease the score under the
same section (A1,A2,...) below zero.
Calibration Points
A1 Plotting 1.0

Compute color indices for sufficient
number of data points over range

0.3

Plot of color indices 0.5
Proper axis labels & ticks 0.1
Sufficient size of graph for precise
readout (≥ 1

2 page)
0.1

Each point computed/drawn incor-
rectly

−0.1

A2 Trend line 0.5
Smooth trend curve or a composite
of linear trends

0.5

Single linear trend line (generates
outliers at some temperatures)

or 0.3

Zig zag connected points (=used in-
terpolation for readout), or point-
wise connected curve

or 0.1

Total on Calibration 1.5
This section is only for the calibration data (tables,

graphs) based on the given table. Plots made based on
IR measurements, get zero points.
Full points are given for a single colour index graph,

or for multiple colour indices whichmay be on the same
plot or on the separate plots.
Absolute values plotted: At most 0.2 points for A1 (if

axes and ticks are done correctly, see the table above),
if they plotted the absolute values through one filter or
differences of values of several filters, instead of colour
indices. The illuminance depends on the distance and

the brightness of the light source, so absolute values can-
not be used to determine the temperature. Points for A2
may nevertheless be given.

Measurements Points
B1 Data collection † 1.2

Measured U , I , E through 2 or 3 fil-
ters at n ≤ 8 points (for 1 filter only
3/4n and rounded, for measurement
of U and I or RG(B) only, which typ-
ically happens with measurements
with IR thermometer, max. 0.3)

0.1n

Compute P 0.1
Compute color indices or convert di-
rectly to temperature (from graph or
trend in A2)

0.1

No points below 5W −0.1
No points above 16W −0.1
Measured RGB background 0.1
Determined background constancy
(e.g. measured at the beginning and
the end)

0.1

B2 Temperature plot ‡ 0.9
Determine temperatures 0.3
Plot of data 0.3
Add best fit curve 0.1
Proper axis labels & ticks 0.1
Proper size of graph 0.1
Each point determined/drawn incor-
rectly

−0.1

Used G/B index −0.2
B3 Result quality ‡ 0.4

Nonlinearity of the relationship is
visible

0.1

Nonmonotonous relationship −0.1
RMS from best fit within 40K 0.3
RMS from best fit within 80K or 0.2
RMS from best fit within 120K or 0.1

Total on Measurements 2.5
† Presentation of data: If U and I are directly mul-

tiplied and only P values are presented, no marks are
deducted.
Background: Points for background are only granted

if the background is subtracted from themeasurements,
or can be reasonably neglected.
‡ IRmeasurement: If temperatures are “determined”

from IR measurements or any other method unfit to de-
termine the temperature, nomarks are given for B2. The
same holds for B3, because presence of nonlinearity is
not an indicator of quality for meaningless data.
To determine the RMS at B3, we compare it to Eq. 2 and

take the root of themean squared deviation. Reasonably
exclude any outlying measurements at very low powers
where we expect large deviations. The RMS calculations
can be handled by the auxiliary Excel file.
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E2: Efficacy

Theory

Light sources do not radiate in all directions equally. The
angular distribution of luminous flux Φ (luminous in-
tensity) must be integrated over the solid angle. A light
meter at distance r to the light source, oriented so that
the light falls on it perpendicularly, measures the illu-
minance E of a certain part of the imagined integration
sphere surrounding the light source:

Φ =

∮
E(Ω)r2dΩ. (3)

The LED only shines the light into a hemisphere, and
has cylindrical symmetry around the direction straight
ahead, so we can simplify the expression,

ΦLED = 2π

∫ π/2

0

E(θ)r2 sin θ dθ, (4)

and for the incandescent bulb, the symmetry axis is per-
pendicular to the direction straight ahead, and shines
into full solid angle:

ΦW = 4π

∫ π/2

0

E(θ)r2 cos θ dθ. (5)

The integrals will have to be evaluated numerically –
it can be done by using the trapezoidal or the Simpson
method, or by using the formula for a spherical segment
area given in the hint:

Φ = 2πr2
∑
i

E(θi+1/2)(cos θi − cos θi+1) (6)

and equivalent (but with sin ⇐⇒ cos) for the incandes-
cent bulb. Here, choosing evaluation points in the mid-
dles of intervals is better than choosing one of the edge
points. However, the exception are the “edge” measure-
ments, where the measurement point is actually in the
middle of the interval – the point straight ahead for the
LED is in the middle of the spherical cap. The same goes
for the “poles” of the incandescent light bulb.
The ratio between the head-on measured illuminance

and the luminous flux, can be expressed as

Φ = Cr2E(0), (7)

or,more intuitively, as a correction factor to the isotropic
source:

Φ = {4π, 2π}C̃r2E(0). (8)

Analytical estimates

One possible pathway is to estimate these factors with-
outmeasurements, using reasonable assumptions about
the light distribution. The LED can be assumed a planar
emitter, with a cosine distribution of luminous flux:

C̃LED =

∫ π/2

0
cos θ sin θ dθ∫ π/2

0
sin θ dθ

=
1

2
(9)

which turns out to match the experiment well.
For the incandescent bulb, a similar assumption can

be made based on a thin filament model. The different
orientation of the symmetry axis leads to a different re-
sult:

C̃W =

∫ π/2

0
cos2 θ dθ∫ π/2

0
cos θ dθ

=
π

4
≈ 0.79. (10)

These approximations can be used to a good effect but
are not required in the experimental task.

Experiment

To measure the angular dependence, a suitable distance
to the light source must be chosen. Too far, and the sig-
nal becomes weak and any background could become
noticeable. It is advisable tomeasure the angular depen-
dence at the highest power in order to improve the sig-
nal to background ratio. Measurement can also be per-
formed through one of the filters.
For the incandescent bulb, the finite size of the fila-

ment becomes an issue if we measure too close to the
bulb. This becomes noticeable at distances lower than
10 cm. This was not an issue for the colour index mea-
surement, but it matters for the absolute flux estimation.

Figure 3: Angular profile of the incandescent light bulb,
measured at r = 15 cm, P = 20.6W in increments 10°.
Vertical lines are the division angles for formula (6). We
obtain C = 10.01 (C̃ = 0.80).
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To describe the inflection point in the light distribution
well, we will need at least 5 measurements in the θ ∈
[0, π/2] interval. We can either rotate the light source on
the spot, or position the light meter at different angles in
relation to the stationary light source.
For the light distribution left-right symmetry canbe as-

sumed, or, alternatively, the entire θ ∈ [−90°, 90°] range
can bemeasured, allowing to take into account asymme-
tries and an angular offset in the light distribution. The
straight ahead measurement is centered in a symmetric
band, which needs care so it is not double-counted in
case only half of the range is integrated and then dou-
bled.
With the conversion factors known, the luminous ef-

ficacy can be determined by measuring the frontal illu-
minance at powers that cover the entire range from the
lowest detectable illuminance to the maximum allowed
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Figure 4: Angular profile of the LED, measured at r =
10 cm, P = 1.33W in increments 10°. Vertical lines are
the division angles for formula (6). We obtain C = 2.63
(C̃ = 0.42).
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C C̃
W 10.01 0.80
LED 2.63 0.42

Table 1: Example values of the conversion factor be-
tween the frontally measured illuminance and the lu-
minous flux for both light sources. The values will
vary within some wider distribution because of varying
light sources and other errors, which is indicated by the
brackets in the grading sheet.

power. For the incandescent bulb, this measurement
can be done simultaneously with Task 1 for better time
efficiency.
It is not required to measure at the same distance as

the angular dependence. Multiple distances may also be
used.
We have to avoid placing any additional objects near

the light source to avoid introducing more reflected or
blocked light – such as placing the light source directly
on the white paper, or having other obstructions such as
the black paper screen or any filters too close to the light
bulb.
To plot the efficacy, we divide the Φ obtained from eq.

(3) for each of the light sources, with P = UI read out
from the power supply.
The result shows that the efficacy of the incandescent

light starts out at zero at low powers and increasingwith
power, as its temperature increases. The LED has the
highest efficacy at lowest powers, then it drops off at
higher powers, mostly due to increased temperature of
the light emitting junction.
At the lowest settable currents, the readout on the

power source is no longer reliable – for example, LED
may glow slightly even at 0A. The pole at the origin can
be attributed to this source of error.

Marking scheme

The basic equations could be stated in a separate section
of the solution, or spread over different parts of the so-
lution.

Figure 5: Efficacy of both light sources depending on the
input power.
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Theoretical background Points
A1 Eq. (3) or equivalent 0.5

Dependence on r−2 0.2
Dependence on angle (noticing
anisotropy)

0.3

A2 Take into account cylindrical sym-
metry (each)

2×0.1

Choose right symmetry axis for light
sources (each)

2×0.1

Correct factors of 2π and 4π (LED and
bulb, respectively)

0.1

Assume area of the sensor comes
into calculations

−0.2

Total on Theory 1.0
2×means one for each light source (bulb, LED).
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Angular measurement Points
B1 Incandescent measurement 0.9

Measured atn ≤ 6 ormore angles be-
tween 0 and π/2

0.1n

Specified auxiliary data (power, dis-
tance)

0.2

Measured full angular range
[−90°, 90°] (e.g. by rotating light)

0.1

Maximum illuminance below 100 lx −0.2
Measured closer than 10 cm −0.1

B2 Integration procedure 0.7
Used the hint 0.7
Values at the edges of intervals −0.1
Double counting of the equator −0.1

Used trapezoidal or similar rule or 0.7
Incorrect treatment of edge values −0.1
Double counting of the equator −0.1

Analytically derived eq. (10) or sim-
ilar

or 0.7

Averaged values without weights or 0.3
B3 C result accuracy for Tungsten 0.3

Calculated C or equivalent 0.1
Value of C ∈ [9.7, 10.3] 0.2
Value of C ∈ [9.4, 10.6] or 0.1

B4 LED angular measurement 0.9
Measured atn ≤ 6 ormore angles be-
tween 0 and π/2

0.1n

Specified auxiliary data (power, dis-
tance)

0.2

Measured full angular range
[−90°, 90°] (e.g. by rotating light)

0.1

Maximum illuminance below 100 lx −0.2
B5 Integration same as B2 0.7
B6 C result accuracy for LED 0.3

Calculated C or equivalent 0.1
Value of C ∈ [2.8, 3.2] 0.2
Value of C ∈ [2.6, 3.4] or 0.1

B7 Background measured 0.1
Background constancy check (multi-
ple measurements)

0.1

Total on Angular 4.0
Plotting the angular dependence is not required for

the procedure, but it counts as 0.2 points if the integra-
tion procedure was otherwise not performed.
If amatching analytical value for both conversions are

obtained, but angular dependence is not measured, the
contestant can get all marks except for themeasurement
(1.0 out of 1.9 for each light source).
If a comparison of analytical and experimental esti-

mate are done, or if an analytical model is fitted to the
experimental data, the procedure is correct, and up to
additional +0.3 points per light source may be given to
compensate points lost for steps that merit points that
may not be necessary for the method used.

Efficacy measurement Points
C1 Incandescent measurement 0.7

Measured U , I , E for incandescent
light at n ≤ 7 points

0.1n

No measurements above 16W −0.1
C2 Plotting bulb efficacy 0.8

Convert and plot points n ≤ 6 (if con-
verted into flux, not efficacymax 0.3)

0.1n

Missing axis labels −0.1
Deviation from amonotonous shape −0.1

† Values within RMS< 0.2 0.2
Values within RMS< 0.5 or 0.1

C3 LED measurement 0.7
Measured U , I , E for LED at n ≤ 7
points

0.1n

Fewer than 2 measurements above
0.2W

−0.2

Fewer than 2 measurements below
0.2W

−0.1

C4 Plotting LED efficacy 0.8
Convert and plot points n ≤ 6 (if con-
verted into flux, not efficacymax 0.3)

0.1n

Missing axis labels −0.1
Deviation from amonotonous shape −0.1

‡ Values within RMS< 5 0.2
Values within RMS< 10 or 0.1

Total on Efficacy 3.0
† Vary the C factor within the range [9.4, 10.6] to check

for a better match. This helps remove propagation error
from a badly determined C and additionally, any small
variations in power output between light bulbs.
‡ Vary the C factor within the range [2.6, 3.4] to check

if there is a better match. The LEDs may vary in light
distribution and absolute intensity, so the trend cannot
be matched 1:1. Exclude also the lowest power outliers
from the assessment, as the singularity can give a high
RMS without being significant to the LED itself. It de-
pends on the voltage bias of the power source and resis-
tivity of junctions.
RMS comparison: To make the comparison of the

graphed solutions to the reference less subjective, we do
a root mean square comparison: average square devi-
ation from an empirical model curve based on a larger
number of measurements in a controlled environment
(Fig. 5). For the light bulb efficacy, we use

η(P ) = ln(1 + exp(1.189P − 4.632)) (11)

which is just a linear function smoothly flattened at the
bottom.
For the LED, we use

η(P ) = 2.56/P − 23.78P + 259.56 (12)

where possible intensity variations can be compensated
by allowing C variation in C2/C4. Variations in the 1/P
part (due to different offsets in power supply readout)
can be compensated by excluding the low-power mea-
surements from the RMS calculations in a reasonable
way.
All these are in base units without prefixes (omitted

for clarity).
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If angular dependence is ignored use this table as a
shortcut for grading

A1 dependence on r−2 only 0.2
A2 Correct factor of 2π or 4π only 0.1
B1-
B6

not applicable 0.0

B7 Background measured 0.1
Background constancy check (multi-
ple measurements)

0.1

C1 No change 0.7
C2 Rescale with correct C to check RMS 0.8
C3 No change 0.7
C4 Rescale with correct C to check RMS 0.8
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E3: Radiative heating

Theory

The plate receives a radiant flux density j, determined
by the power P of the light source, and the distance r
between the target and the light source. The light source
does not shine equal amounts of light in all directions,
thereforewemust use the correction factorC, derived in
Task 2, to convert from the total radiant flux to forward
radiant flux density.

P = Cr2j → j =
P

Cr2
. (13)

Not necessary, but also correct, is to (numerically)
integrate/average across the entire plate, j(πr2) =
P
∫
Cr−2 cos θ dA to take into account spatial variation of

C, r and θ (angle of incidence).
The incident flux density is dissipated to the environ-

ment directly, as well as by heat conduction through the
plate. Mark by TF the front temperature and TB the back
temperature. Conservation of energy gives us the system
of equations

j = h(TF − T0) +
λ

d
(TF − TB) (14)

0 = h(TB − T0) +
λ

d
(TB − TF ). (15)

This system of equations leads to the following relations:

j = h(TF + TB − 2T0) (16)

j = (h+ 2
λ

d
)(TF − TB). (17)

Any linear combination of equations (14,15) also al-
lows determination of both h and λ. A particular linear
combination that may be used is the isolation of individ-
ual temperatures:

TF − T0 =
1

2

(
1

h
+

1

h+ 2λ
d

)
j (18)

TB − T0 =
1

2

(
1

h
− 1

h+ 2λ
d

)
j. (19)

In our system, 2λ
d > h, but still in the same order of

magnitude. Treating the slope of TF as 1/(2h) or the slope
of TF −TB as (2λ/d)−1 is a reasonable approximation, but
still not theoretically correct.

Error analysis
Errors should be propagated from the slope. For ex-

ample, if they obtain slopes k1 = 1/h and k2 = 1/(h +
2λ/d), they should propagate the errors. We should al-
low both straight addition of error contributions of dif-
ferent terms, or adding squared errors (independent er-
rors), e.g.

h =
1

k1
± σ1

k21
(20)

λ = d
2 (

1

k2
− 1

k1
)± d

2

(
σ1

k21
+

σ2

k22

)
(21)

and analogously for other slope definitions.

Albedo

For the white plate, only a part of the incident flux is ab-
sorbed, so we replace j by j(1− a) if a is the albedo:

j = (1− a)
P

Cr2
. (22)

As a consequence, any slope measured for both plates
will be in the ratio (1 − a) to each other. This can be ex-
pressed as a fraction of trend slopes, ratio of tempera-
ture differences, or similar.

Experiment

The radiant flux density can be varied in twomainways,
or a combination of both: by changing the distance, or by
changing the current through the light bulb. Both meth-
ods are acceptable, but varying the current also changes
the spectrum and the efficiency of the light bulb, so it
may produce biased and nonlinear results. The students
should know that varying a single parameter is the cor-
rect procedure.
The required measurements in this task are the front

and back temperature at different powers, for black and
white plate. It is essential to wait for equilibration,
which includes waiting the back temperature to stabi-
lize. It is advisable to measure starting with the lowest
flux density, because it will require the least equilibra-
tion time from the initial room temperature of the plate.
The target should not be too close to the light source,

not only because of the risk of burning, but also because
close to the light bulb, the light is very nonuniformly dis-
tributed across the plate. Increased convection rate due
to high temperature also starts deviating from the linear
regime. Placing the target too far from the light source
leads to a negligible heating and thus a very large rela-
tive error in temperature differences, especially for the
white plate.
In this task, the measurements are subject to many

sources of errors: measuring from different distances
and at different angles may include different propor-
tions of background or reflected IR radiation from the
light source (if the targeted area is still illuminated), if
themeasurement takes too long, the platemay start cool-
ing down (this is noticeable in a few seconds), air cur-
rents may increase convective heat dissipation, and the
ambient temperature may also change during the mea-
surement (especially if the light source is placed too close
to the wall, or if the power source’s fan exhaust is too
close to the measurement setup). The errors are most
noticeable at low radiant flux and for the white plate,
where increases in temperature are the smallest.
For these reasons, it is advisable to take more than

one measurement per data point and average the re-
sults, and to cover a sufficientlywide range to reduce the
slope error. At least 3 points are needed to draw a trend,
but 5 is better. With more points, it is easier to spot out-
liers and utilise the measurements which are least sub-
jected to errors. Back and front temperatures are best
measured in pairs one after the other to reduce the er-
ror in the temperature difference signal due to changing
conditions.
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Note: the ambient temperature T0 is an effective tem-
perature that combines air temperature and radiative
exchange with the surrounding walls, ceiling and other
objects. We do not need its value, we only need the
slopes of the linear trends. Inexact T0 can lead to inac-
curacies if used together with an assumption the linear
relations go through the origin. T0 cannot be reliably de-
termined by measuring surrounding temperatures, but
it can be estimated by measuring the equilibrium tem-
perature of the plate in the absence of the light source.

The measurements of the front and back temperature
at different radiant fluxes, must be processed and plot-
ted to extract the necessary slopes. For the black plate,
two plots will be needed, based on equations (14,15),
equations (16,17), or any linearly independent pair. Lin-
ear regression gives us the slopes h and h + 2λ

d (or their
reciprocals). T0 is best determined by the j = 0 intercept
of the trend line for (Eq. 16) or any equivalent plot, and
should match T0 determined by other methods. If mea-
sured correctly, the intercept of the trend line for (Eq. 17)
should be zero within the error margin.

It is possible to calculate the necessary slopes from
a measurement at a single input power (for each plate
color), if T0 is measured well. This can be done with-
out a graph. However, usingmultiple measurements de-
creases the impact of statistical errors and enables us to
better estimate the error, so a single measurement will
carry a significant error.

Albedo, as defined in the task text through irradiance
units, cannot be measured using a light meter, which
measures in photometric units. Additionally, light re-
flected from awhite plate introduces additional geomet-
ric considerations and angular distribution of reflected
light, that cannot easily be taken into account.

The albedo can be estimated as a fraction of the cor-
responding line slopes between the black and the white
plate, taking any of the relations (14,15,16,17). This
means that for the white plate, measuring only one side
of the plate is enough to determine the albedo, assum-
ing h and λ remain the same. The difference slope or the
back temperature slope are the least suitable, as they in-
troduce a large relative error to themeasurement due to
a minimal increase in temperature.

Marking scheme

The basic equations could be stated in a separate section
of the solution, or spread over different parts of the so-
lution.

Figure 6: Black plate measurements for eqs. (16,17). The
flux density j was varied by changing the distance r. The
slope of the first graph equals h−1, so h = 10Wm−2K−1.
Lowest and highest measurement were excluded from
the fit. The intercept is 2T0.
The slope of the second graph equals (h+2λ/d)−1, so λ =
0.072Wm−1K−1. The intercept is reasonably close to 0.
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Theoretical background Points
A1 Power to irradiance 0.4

Correct eq. (13) or equivalent 0.3
Realizing the same geometry from
Task 2 applies (C or equivalent)

0.1

A2 Heat exchange balance 0.6
Correct each of eqs. (14,15) or equiv-
alent.

2×0.3

Each partially correct eq., e.g. as-
sumed TB = T0 in (14) or missing 2
or h in (17)

or 0.1

A3 Albedo balance 0.2
Correct eq. (22) or equivalent 0.2

Total on Theory 1.2
The assumption that the left hand side of equation

P/A = h(T − T0) distributes the full power of the light
source to the area of the plate, indicates a lack of under-
standing and merits 0 points for theory part.
If conduction is not considered at all amaximumof 0.1

points is given to A2.
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Figure 7: White plate measurements for eqs. (16,17).
The slope ratio with the black plate result is (1 − a) =
0.0254/0.0988 = 0.26 for the first graph. The second
graph confirms this with a closely matching (1 − a) =
0.00465/0.0173 = 0.27.

 45

 50

 55

 60

 65

 70

 0  100  200  300  400  500  600  700  800  900

T
F+

T
B
 [

°C
]

P/Cr2 [Wm-2]

slope=0.0254 °C/(W/m-2)

white plate

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  100  200  300  400  500  600  700  800  900

T
F-

T
B
 [

°C
]

P/Cr2 [Wm-2]

slope=0.00465 °C/(W/m-2)

white plate

Measurements Points
B1 n ≤ 5measurements of TF (black) 0.1n
B2 n ≤ 5measurements of TB (black) 0.1n
B3 n ≤ 5 measurements of TF , TB or

both (white)
0.1n

B4 Measured the unchanging values
(distance if U, I varied, U, I if dis-
tance varied)

0.2

Estimated measurement errors (at
least separate for each plate color)
– the instrument precision is not a
valid error estimate

0.2

Estimated measurement errors
(common for all)

or 0.1

Measured by varying the current
(not distance)

−0.2

Total on Dissipation 1.9
Determination of h and λwill require extraction of two

trend lines from two plots. Plotting on the same graph
counts as two, but the vertical axes must be labelled cor-
rectly. The trend lines will have a j = 0 intercept that
will be 0 in case of temperature difference, and related
to ambient temperature otherwise. Using r−2 or P in-
stead of j as an axis is valid as long as the conversion is
done correctly at the slope readout.

Dissipation parameters Points
C1 First of the two plots 0.8

n ≤ 5 correctly converted and drawn
points

0.1n

Correct trend line 0.1
Correct slope readout 0.1
Slope error estimate 0.1
Intercept disagrees with expecta-
tions

−0.1

Missing axis labels, ticks or unsuit-
able size

−0.1

C2 Second of the two plots 0.8
Same breakdown as C1

C3 Calculation of h 0.8
Correct algebraic relation to slopes 0.2
Numerical value within [10, 14] 0.3
Numerical value within [8, 16] or 0.2
Numerical value within [6, 18] or 0.1
Correct error analysis 0.2
Error estimate < 1 (if error analysis
is reasonable)

0.1

C4 Calculation of λ 0.8
Correct algebraic relation to slopes 0.2
Numerical value within [0.06, 0.08] 0.3
Numerical value within [0.05, 0.09] or 0.2
Numerical value within [0.04, 0.10] or 0.1
Correct error analysis 0.2
Error estimate < 0.01 (if error analy-
sis is reasonable)

0.1

Total on Dissipation 3.2

The values are in SI base units.

Without plotting: If the entire fitting process is done
numerically without plotting, use equivalent concepts to
the grading above – tables instead of plots, slope calcu-
lations instead of trend lines, etc. As the plot is not re-
quired, a correct procedure can yield full points.

The error analysis in this case may consist of doing
the entire procedure (e.g. using a single measurement
with T0 knowledge, or two points without background),
with multiple measurement runs and doing statistics.
Another option is propagating relative errors from the
single measurement errors. The main criterion is, that
the error source is statistical, not instrumental.

The point count includes the origin for the plot of the
temperature difference (eq. 17).

The slope error is the main source of error – distances
and powers can be considered accurate. Error estimate
on the slope can be done based on point scatter (but not
with fewer than 5 points), with or without taking into
account errorbars (if the students estimated them).

Error propagation: if a wrong value of C is used, re-
calculate with a suitable value and grade accordingly.
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Albedo Points
D1 One or more plots 1.0

n ≤ 5 correctly converted and drawn
points

0.1n

Estimated individual measurement
error

0.1

Correct trend line(s) 0.2
Correct slope readout 0.1
Slope error estimate 0.1
Intercept disagrees with expecta-
tions

−0.1

Missing axis labels −0.1
D2 Data processing 0.7

Correct algebraic expression for a 0.2
Numerical value a ∈ [0.65, 0.75] 0.2
Numerical value a ∈ [0.6, 0.8] or 0.1
Correct error analysis 0.2
Error estimate < 0.05 (if error analy-
sis is reasonable)

0.1

Total on Albedo 1.7
The possibility ofmeasuring both temperatures allows

combinations where both sets of data can be used for
albedo estimation – by averaging two slope ratios, or
similar. This is also a valid approach.
In cases where only pointwise numerical evaluation

using several data points is employed a maximum of 0.5
points for D1 (0.3 conversion of data, 0.2 for error esti-
mates) and a maximum of 0.7 for D2 will be awarded.
For evaluation with one data point only a maximum of
0.2 points for D1 (0.1 for conversion of data, 0.1 for er-
ror estimate) and 0.5 for D2 (0.2 algebraic expression, 0.2
value, 0.1 error analysis) will be awarded.


