

OLIMPÍADA BRASILEIRA DE FÍSICA

Prova Seletiva 1 - SOIF / 2025

28 de setembro de 2024

INSTRUÇÕES

- 1. A prova é composta por 5 questões. Sem contar essa folha de rosto, ela contém 6 páginas.
- 2. A duração da prova é de 5 horas ininterruptas. O tempo de prova começa no instante de acesso ao caderno de questões.
- 3. Todas as respostas devem ser justificadas, ou seja, a resolução da questão compreendida pelas principais etapas que levam às respostas deve ser apresentada.
- 4. As resoluções devem escritas de próprio punho em folhas inicialmente em branco (não use editores de texto). É permitido apenas o uso de caneta, de cor azul ou preta, lápis preto de traço forte, régua e calculadora não programável.
- 5. As folhas com a resolução de cada questão devem ser escaneadas no formato PDF. Um documento PDF (documento resposta) para cada questão.
- 6. Cada documento resposta deve ser enviado (submetido) através da correspondente interface de respostas em https://app.graxaim.org/soif/2025.
- 7. Quando um documento resposta é enviado a questão é considerada respondida. Não é possível enviar um documento para substituir outro já enviado.
- 8. Você pode responder as questões (enviar os documentos) em qualquer ordem. **Atenção** para não enviar o documento resposta de uma questão no lugar de outra.
- 9. Durante a prova, é permitido o uso de celular ou computador apenas para acessar o site https://app.graxaim.org/soif/2025, ou para trocas de mensagens com os co-ordenadores da SOIF através do endereço equipeobf@graxaim.org. Todos os demais usos (aplicativos gráficos e numéricos, consultas, busca na internet, etc) são proibidos.
- 10. Questões enviadas após do 5 horas do início da prova (acesso ao caderno de questões) não serão avaliadas, apesar do sistema aceitar a submissão normalmente.

SELETIVA 1

Q1 - Oscilações acopladas (10 pontos)

Três massas $m_1 = m_2 = m_3 = m$ estão conectadas em uma linha reta por quatro molas idênticas de constantes elásticas k. As extremidades das molas mais à esquerda e mais à direita estão fixas em duas paredes, como mostrado na figura abaixo. Os corpos estão livres para se movimentar apenas na direção horizontal.

$$k$$
 m_1 k m_2 k m_3 k

Denote por x_1 , x_2 e x_3 as posições de cada uma das massas, respectivamente, a partir da posição de equilíbrio do sistema $(x_1,x_2,x_3)=(0,0,0)$ na qual as molas encontram-se no seu comprimento natural. Faça o que se pede nos itens a seguir.

- a. Determine as equações diferenciais que descrevem a variação de x_1, x_2 e x_3 com o 2,0pt tempo.
- b. Determine a energia elástica U armazenada no sistema para uma configuração na 2,0pt qual as massas encontram-se em posições genéricas x_1 , x_2 e x_3 .

Uma oscilação qualquer das massas pode não ter uma frequência bem definida, mas sempre pode ser descrita como a superposição de três modos de oscilação com frequências angulares distintas, dadas por $\omega_1 \leq \omega_2 \leq \omega_3$.

Essas frequências angulares podem ser escritas convenientemente em função de $\omega_0 = \sqrt{\frac{k}{m}}$.

c. Determine os valores de ω_1, ω_2 e ω_3 em função de ω_0 . 6,0pt

Q2 - Transferência de órbitas (10 pontos)

Um satélite de massa m encontra-se inicialmente em órbita circular C_1 , de raio R, ao redor da Terra. Nesse problema, discutiremos como realizar a transferência do satélite dessa condição inicial para uma nova órbita circular C_2 , de raio 2R. Denote a massa da Terra por M. Considerando a órbita inicial do satélite, responda aos itens a seguir.

a.	Determine a velocidade orbital v do satélite na órbita C_1 .	1,0pt
b.	Determine a energia E do satélite na órbita C_1 . Adote o referencial de energia potencial gravitacional no infinito.	1,0pt

Para realizar a transferência de órbita desejada, dispomos de dois incrementos de velocidade impulsivos capazes de gerar uma variação $\Delta \vec{v}$ durante um intervalo de tempo muito menor do que o período de revolução do satélite. O primeiro impulso faz com que o satélite saia de sua órbita circular original e passe a descrever uma órbita elíptica E.

A seguir, em um determinado instante, um segundo impulso é acionado, a fim de transferir o satélite da órbita elíptica de transferência para a nova órbita circular desejada, C_2 . Considere os impulsos ocorrem sempre na direção tangencial às trajetórias e são tais que o consumo de combustível é o menor possível.

с.	Determine o semi-eixo maior, a , da órbita E .	1,5pt
d.	Determine a energia E do satélite na órbita E .	1,5pt
е.	Determine o impulso Δv_1 do primeiro impulso.	3,0pt
f.	Determine o impulso Δv_2 do segundo impulso.	2,0pt

Q3 - Trocador de calor (10 pontos)

Neste problema, analisaremos um modelo simplificado de um trocador de calor entre fluidos. O trocador é composto de uma placa metálica muito fina de espessura w, largura L e semi-infinita no eixo \hat{x} . Acima da placa metálica passa um filme de água quente, e, abaixo, um filme de água fria. Ambos os fluxos de têm uma velocidade constante $\vec{v} = v\hat{x}$, e uma espessura pequena h.

Se a água quente entra no trocador (em x=0) a uma temperatura T_1^0 , e a água fria a uma temperatura T_2^0 , o efeito do trocador é conduzir calor entre os fluidos e levá-los a um equilíbrio térmico ao longo do eixo x. Neste problema, estudaremos este fenômeno e a dependência das temperaturas de cada fluido em função da coordenada x.

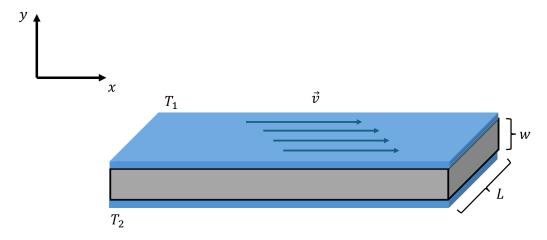


Figura 1: Movimento dos dois filmes de água nas duas faces da placa metálica.

Assumiremos que os filmes de água encontram-se em equilíbrio hidrodinâmico e que são suficientemente finos tal que sua temperatura depende apenas da coordenada x (e não de y). Dessa maneira, seja $T_1(x)$ a temperatura da face superior da placa, e $T_2(x)$ a temperatura da face inferior da placa. Seja ainda k a condutividade térmica do metal, ρ a densidade da água, e c sua capacidade térmica.

Considerando a condição de escoamento estacionário, faça o que se pede nos itens a seguir.

a.	Determine o valor de $T_1(x) + T_2(x)$ em função de T_1^0 e T_2^0 .	2,0pt
b.	Determine uma expressão para a diferença de temperatura entre os fluidos	7,0pt
	$\theta(x) = T_1(x) - T_2(x)$	
	em função da coordenada x .	
с.	Determine $T_1(x)$ e $T_2(x)$ em função dos dados fornecidos no enunciado.	1,0pt

Q4 - Interferência por espelhos (10 pontos)

Considere o experimento de interferência ilustrado na Figura 2. No aparato experimental dispomos de uma fonte de luz pontual no ponto F, dois espelhos levemente inclinados com respeito à direção vertical articulados no ponto E, e um anteparo vertical em T. No anteparo, observaremos um padrão de interferência na intensidade da luz I(y). Nesta questão, estudaremos este fenômeno e a função I(y).

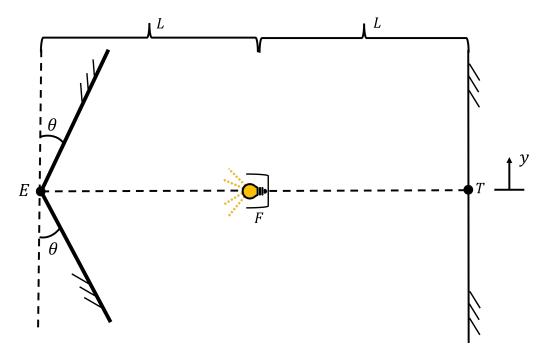


Figura 2: O aparato experimental. Na figura, a luz da fonte F está sendo parcialmente obstruída, e só pode incidir no anteparo incidindo primeiramente nos espelhos.

Considere que os espelhos estão inclinados a um ângulo θ , a distância entre a fonte F e o ponto E é L, a distância entre F e a tela T também é L e que o comprimento de onda da luz emitido pela fonte é λ . Assumiremos que $y \ll L$, e que o ângulo θ é pequeno suficiente para que podemos desconsiderar múltiplas reflexões da luz nos espelhos.

Sempre que for solicitado uma expressão da intensidade I(y), forneça como resposta uma função que considere a intensidade máxima observada igual a I_{max} .

- a. Assumindo que a fonte de luz está sendo parcialmente obstruída como na Figura 2, tal que a luz da fonte F só pode incidir na tela através de uma reflexão nos espelhos, encontre a intensidade da luz na tela I(y) em funcão de y.
- **b.** Agora, remova a obstrução sobre a fonte de luz F, tal que a luz pode incidir na tela 4,0pt ambos com e sem reflexão nos espelhos. Encontre I(y).
- c. Para a situação sem obstrução do item ${\bf b}$, calcule para quais valores de y a intensidade I(y) é máxima e mínima, e o valor da intensidade nestes pontos. Também esboçe um gráfico de I(y).

Q5 - Óptica do arco-íris. (10 pontos)

Arco-íris surgem porque as gotas de chuva espalham a luz, preferencialmente em certas direções. Esse efeito de focalização resulta em um céu mais brilhante em determinada região, e esse brilho é o que chamamos de arco-íris. As cores do arco-íris são causadas pelas diferenças nos índices de refração da água para diferentes comprimentos de onda.

Parte I - Arco-íris primário (6,0 pontos)

Considere um raio de luz incidindo na superfície de uma gota de chuva, formando um ângulo genérico ϕ com a horizontal. Suponha que o índice de refração da água seja igual a $\frac{4}{3}$ e que as gotas de chuva sejam perfeitamente esféricas. O raio de luz é refratado, formando um ângulo β com a direção radial da gota, conforme mostrado na figura a seguir.

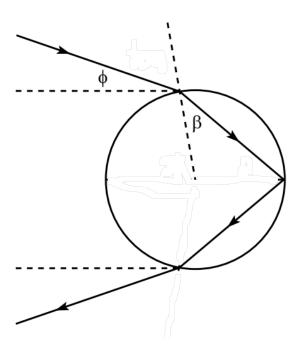


Figura 3: Esquema de uma reflexão total no interior de uma gota de chuva.

O ângulo de refração, β , dependerá do índice de refração específico de cada cor. Na figura acima se mostra o caso em que o raio refratado, após sofrer uma reflexão total interna na superfície posterior da gota, acaba sofrendo uma segunda refração e emerge da gota para o ar novamente.

a. Mostre que a equação que relaciona os ângulos ϕ e β é

3,0pt

$$\phi = 2\beta - \arcsin\left(\frac{4}{3}\sin\beta\right)$$

Note que, β não pode ser maior do que arcsin $\frac{3}{4}$, já que levaria a um valor de seno superior a 1. Este valor de β resulta no ângulo crítico para a interface ar/água.

b. Nesta equação podemos perceber que o ângulo ϕ tem um máximo para certo valor de $\beta_{\phi_{max}}$. Encontre esse ângulo e o valor de ϕ_{max} correspondente.

Parte II. Arco-íris secundário (4,0 pontos)

Um segundo arco-íris pode ser formado a partir de duas reflexões internas totais na gota, antes de o raio sofrer a segunda refração. O resultado é um arco-íris invertido, ou seja, com as cores na ordem contrária. Este fato se explica porque a função $\phi(\beta)$ agora possui um mínimo em $\beta_{\phi_{min}}$.

c.	Encontre a nova expressão de $\phi(\beta)$, assim como β_{min} e $\phi(\beta_{min})$.	2,0pt
d.	Qual é o desvio angular total do raio refratado em relação ao incidente?	2,0pt