Astronomia - Semana 81

(INICIANTE)

Dona Tereza levou seus filhos para aproveitarem as praias de Punta Cana, \phi=18 ^{\circ} 30'N, e, durante um dia relaxante na areia, reparou que a luz solar incidente no baldinho, que seus filhos largaram para fora do guarda-sol, nem sempre chegava ao fundo da cavidade.

Curiosa, ela se propôs a investigar as condições do efeito. Considerando o diâmetro angular do Sol como 30' e sabendo que o objeto é um cilindro de altura h=20cm e diâmetro D=12cm, responda:

a) Para uma declinação genérica do Sol, qual deve ser a altura mínima deste no céu para iluminar o fundo do baldinho, que se encontra na posição vertical?

b) Qual seria o tempo que o fundo do baldinho ficaria iluminado no dia 21 de março (equinócio)?

Dica: com trigonometria esférica é possível estabelecer a relação: \cos z = \cos \phi \cos H para objetos que residem no equador celeste.

 

(INTERMEDIÁRIO)

Velas solares são protótipos de instrumentos que utilizam a pressão de radiação proveniente da estrela para propulsionar uma pequena massa acoplada. Consistem de grandes e finos espelhos, cuja normal sempre está voltada à incidência radioativa, e ao refletirem os fótons em sua superfície adquirem certo momento, que é convertido em aceleração. Para este caso, considere uma vela solar de área A = 250 \ m^2, massa m = 300 \ g, com superfície perfeitamente refletora e responda:

a) Qual é a força devido à pressão de radiação que age na vela a uma distância r do Sol?

b) Quanto ao movimento da vela solar, uma vez lançada, pode-se dizer que seu momento angular é conservado? Por quê?

c) Determine a energia potencial associada à força que propulsiona a vela solar, e calcule qual seria a velocidade final de uma vela abandonada da órbita terrestre.

 

(AVANÇADO)

Em uma empolgante olímpiada de astronomia os estudantes foram apresentados à tarefa de realizar observações da temperatura efetiva de um buraco negro. Com uma instrumentação inacreditavelmente precisa, foram capazes de tirar medições de um pequeno buraco negro (3,5 M_{Sol}) na própria Via Láctea, e descobriram que este irradiava muito fracamente, com uma temperatura de 1,75\cdot10^{-8}K.
Buscando uma análise mais detalhada da irradiação de um buraco negro,a próxima questão procurava uma relação entre a massa do corpo e sua temperatura efetiva. Resolva a questão, e utilize os dados experimentais quando necessário.
Considere para a análise buracos negros idealizados (sem rotação nem carga)

a) Encontre, através apenas de análise dimensional, uma relação de proporcionalidade envolvendo explicitamente as constantes e variáveis relevantes, para a área A do buraco negro, e então para sua entropia S, sabendo que S \ \propto \ A.
Você fará uso das constantes k_B, c, G e \hslash, porém use-as apenas quando forem relevantes.

b) Como uma pequena variação na massa do buraco negro afeta sua entropia?
Utilize que (1 + x)^{n}=1 + nx para x << 1

c) Estabeleça a relação entre a variação de energia interna U do buraco negro e a variação de sua massa M, e então, assumindo que nenhum trabalho é feito pelo buraco negro, encontre a dependência da temperatura com as variações da entropia e da massa.

d) Com os resultados obtidos, determine a relação entre a temperatura do buraco negro e sua massa, estabelecendo \eta como a constante adimensional que transforma a relação de proporção em igualdade.

e) Determine a constante \eta através dos dados experimentais e responda: qual é a temperatura efetiva de um buraco negro como Sagittarius A (M = 4\times10^6 M_{Sol})?