Comentário NOIC OBI 2018 - Fase 3 - Programação Nível 1

OBI 2018 - Fase 3 - Programação Nível 1

Para conferir a prova na íntegra, clique aqui.

Troca

Comentário escrito por Estela Baron

Conhecimento prévio necessário:

A primeira ideia que temos é guardar dois vetores - um para os valores de cima e outro para os outros de baixo - e, para cada L R, percorremos o intervalo invertendo os valores. No entanto, no pior caso, temos 10^5 posições para percorrer 10^5 vezes - com esse caso, o nosso código estouraria o limite de tempo (complexidade).

Como vimos que a ideia anterior não funciona, vamos tentar encontrar uma outra forma mais eficiente. Observe que o problema só quer saber quais são os valores na face de cima. Além do mais, se uma carta é virada uma quantidade par de vezes no total, quer dizer que o valor mostrado na parte de cima não vai mudar. Agora, se essa carta é virada uma quantidade ímpar no total, o valor na parte de cima tem que ser trocado. Com isso, concluímos que só precisamos saber a quantidade total que cada carta vai ser trocada.

Não podemos simplesmente adicionar +1 em todas as posições do intervalo [L,R], pois daria o mesmo problema da ideia inicial. Para resolver esse impasse, vamos utilizar a técnica de soma de prefixo - o novo valor atual é igual ao valor anterior mais o atual. Mais especificamente, vamos adicionar +1 na posição L e -1 na posição R + 1, pois, com a soma acumulada, adicionamos +1 em todas as posições de L até o final e subtraímos 1 de todas as posições a partir de R+1 - o que zera 1 - 1 = 0 todas as posições fora do intervalo.

Com isso, para cada um dos T intervalos, adicionamos +1 na posição L e -1 na posição R+1. Depois disso, percorremos todas as posições e mudamos o valor delas para o valor da posição anterior mais o valor atual.

A partir disso, temos a quantidade exata de vezes que cada carta foi virada. Veja que a complexidade fica boa, pois, em cada operação de T, temos O(1). E só percorremos as N posições uma vez, no fim.

Por fim, para definir qual é o valor da face de cima de cada carta, é necessário ver a paridade da quantidade de vezes que a carta foi virada, se for par, o valor é o mesmo do estado original, caso contrário, é o outro.

Clique aqui para conferir o código

Recibo de Compra

Escrito por Caique Paiva

Conhecimentos Prévios Necessários:

Vamos fazer uma dp! Os estados serão (int pos, int pes, int lastn), onde pos é a quantidade de produtos que precisamos pegar, pes é o valor total que precisamos pegar, e lastn o valor do último produto que a gente pegou. Então, a transição da dp vai ser

dp(pos, pes, lastn) = \sum_{i = 1}^{lastn - 1} dp(pos-1, pes-i, i)

Veja que, se fizéssemos uma knapsack normal, ou seja, só com os estados (int pos, int pes) e tentassemos aplicar a mesma recorrência, teríamos:

dp(pos, pes) = \sum_{i = 1}^{lastn-1} dp(pos-1, pes-i)

Nós retornaríamos com a solução do problema, só que com ordem dos valores importando, ou seja, a escolha de valores \{1, 4, 7 \} seria igual a \{1, 7, 4\}, e além disso, poderíamos ter valores iguais. Por isso, colocamos o estado lastn na dp, pois, além de garantir que não tenha valores iguais na compra, deixa as escolhas dos valores em ordem crescente, e então, não ocorre repetição.

No final, basta retornar dp(k, r, r+1). Essa dp roda em O(K R^3), pois temos O(KR^2) estados, e a transição roda em O(R). Isso passa no problema, visto que K, R são bem pequenos.

Clique aqui para ver o código

Bônus: Um problema parecido com esse é o Coin Combinations do cses, vale a pena dar uma olhada! (Link).

Pulo do Gato (P1)

Comentário escrito por Estela Baron

Conhecimento prévio necessário:

Podemos imaginar o grid (quadriculado) como um grafo, sendo que cada casa é um vértice, que possui arestas para todas as casas dentro do quadrado 5X5. Para descobrirmos a menor quantidade de pulos, temos que utilizar o algoritmo bfs - mantemos uma fila com as posições que conseguimos alcançar e sempre pegamos a posição do início para analisarmos. Em cada posição da fila, em ordem, vamos ver se as outras casas contidas no quadrado 5X5 (centrado na posição em análise) são lajotas e ainda não foram alcançadas. Se elas já tiverem sido alcançadas, quer dizer que há um caminho menor ou igual - então não há necessidade de adicionarmos na fila. Porém, se ela for uma lajota e não tiver sido alcançada, mudamos a distância mínima daquela casa para a distância da atual + 1 e adicionamos essa posição na fila.

Ao final, teremos analisado todas as casas alcançáveis. Portanto, basta imprimir a distância da posição [L][C]. Podemos inicializar com todas distâncias iguais a -1, pois, se não for possível alcançar, vai imprimir -1.

Obs: no código, as distâncias mínimas foram armazenadas em res[][ ].

Clique aqui para conferir o código