Problemas da Semana 42 - Problema Avançado

Tédio no Avião

Arthur Lobo está num avião para ir para a IOI! O voo tem uma duração de 10 horas, então, para passar o tempo, ele inventou o seguinte jogo. Primeiro, ele criou um conjunto de n elementos e pensou em algum inteiro c. Nesse conjunto, ele quer calcular a quantidade de pares (x, y) com 0 \le x \le y \le c tal que x+y não está em s e y-x não está em s. Ajude o Lobo a jogar esse divertido jogo.

Entrada:

Cada teste consiste de múltiplos testes. A primeria linha contem um único inteiro t (1 \le t \le 2 \times 10^4) - O número de casos testes. A descrição de cada caso teste segue da seguinte maneira.

A primeira linha contém dois inteiros n e c (1 \le n \le 3 \times 10^5, 1 \le c \le 10^9) - O tamanho do conjunto e o inteiro que o lobo pensou.

A segunda linha contém n inteiros s_1, s_2, \cdots , s_n (0 \le s_1 < s_2 \cdots < s_n \le c) - Os elementos do conjunto s.

É garantido que a soma dos n sobre todos os casos testes não passa de 3 \times 10^5.

Saída:

Para cada caso teste, imprima um único inteiro - O número de pares contados.

Entrada Saída
8

3 3

1 2 3

1 179

57

4 6

0 3 5 6

1 1

1

5 10

0 2 4 8 10

5 10

1 3 5 7 9

4 10

2 4 6 7

3 1000000000

228 1337 998244353
3

16139

10

2

33

36

35

499999998999122959

Nota:

No primeiro caso teste, os seguintes pares são soluções: (0, 0), (2, 2), (3, 3).

No terceiro caso teste, os seguintes pares são soluções: (0, 1), (0, 2), (0, 4), (1, 3), (2, 6), (3, 4), (3, 5), (4, 5), (4, 6), (5, 6)