OBF 2018 - Primeira Fase (Nível 1)

Escrita por Victor Almeida Ivo e Paulo Kitayama

Você pode acessar a prova aqui

Questão 1:

Conhecer as ciências a partir dos seus contextos históricos enriquece a compreensão conceitual, motivando e despertando estudantes e professores para uma aprendizagem mais significativa, ao mesmo tempo em que mostra que a evolução dos fatos que hoje sabemos não foi pensada do dia para noite, mas que passaram por refutações, discórdias, até ser cientificamente aceita. Você já deve ter se perguntado a respeito de como foi possível medir o diâmetro da terra, a velocidade do som, a distância entre as estrelas, a existência do átomo, a equivalência entre energia e matéria e que a terra gira em torno de si mesma? Quem foram os responsáveis por esses experimentos que permitiram. A partir desse contexto, indicamos alguns cientistas importantes que talvez você já ouviu falar sobre eles. Identifique, nas proposições seguintes, nomes de pessoas que contribuíram significativamente para o desenvolvimento da física:

a) Einstein, Galileu, Newton, Joule, Faraday

b) Einstein, Galileu, Darwin, Goethe, Joule

c) Joule, Newton, Planck, Pasteur, Einstein

d) Planck, Newton, Lineu, Bohr, Fermi

e) Henry, Lenz, Sabin, Heisenberg, Bohr

Assunto abordado

História da ciência

[collapse]
Solução

O primeiro passo do problema é primeiro reconhecer os físicos mais conhecidos. Joule foi um físico britânico que formulou a primeira lei da termodinâmica, ganhando inclusive um nome de unidade própria no SI (a de energia). Newton foi o físico que formulou as leis da mecânica clássica, cujas três leis são estudadas em todo curso de mecânica. Galileu foi o físico antecessor a época de Newton que formulou vários experimentos para estudar o movimento dos corpos, e foi o primeiro a motivar e defender o princípio da inércia com argumentos fortes, percebendo também que na terra, caso não houvesse resistência do ar, todos corpos cairiam com a aceleração da gravidade. Einstein é talvez o físico mais conhecido do mundo, com seus trabalhos mais conhecidos sendo a relatividade especial e geral e efeito fotoelétrico. Ele teve um grande impacto no século XX, e provavelmente continuará sempre com um ponto especial na história. Por último, Faraday é um físico extremamente conhecido por seus trabalhos com indução eletromagnética, e suas descobertas experimentais possibilitaram a construção de grande parte dos motores de geração de energia atuais. Ele também é conhecido pelo seu experimento usando a "Gaiola de Faraday", no qual ao entrar numa gaiola condutora ele fica protegido contra descargas externas, como raios ou faíscas, pois os elétrons se distribuem na superfície externa do condutor.

[collapse]
Gabarito

Item A

[collapse]

Questão 2:

Utilizando-se de um kit de experimentos constituído de um trilho de ar e duas esferas, o Professor Physicson efetuou a seguinte experiência, representada pela figura a seguir.

OBF15

No esquema mostrado, as esferas movem-se em linha reta e com velocidades constantes, ao longo de uma régua centímetrada, cujas posições são mostradas na figura, de forma estática. Atentos ao desenrolar dos acontecimentos, os alunos verificaram que a colisão entre as esferas ocorreu na posição correspondente a:

a) 18 cm

b) 22 cm

c) 20 cm

d) 17 cm

e) 10 cm

Assunto abordado

Cinemática

[collapse]
Solução

 A velocidade relativa das duas esferas é, por definição, a substração das duas velocidades e também a taxa de variação das distâncias delas no tempo. Desta maneira, aplicando a definição de velocidade relativa, você encontra que o tempo para a colisão ocorrer é:

t=\frac{\Delta x}{v_{2}-v_{1}}=\frac{14-10}{5-3}=2 s

Nesse tempo a bola branca andou x=2*3=6 cm, e portanto foi de x=14cm para x=14+6=20 cm, sendo esta a posição da colisão. Portanto, o item correto é o item C.

[collapse]
Gabarito

Item C

[collapse]

Questão 3:

Procurando despertar os alunos para a compreensão da ação gravitacional que a Terra promove sobre todos os corpos dentro do seu campo, o professor de Ciências fez a seguinte ilustração, representada na figura a seguir, na qual temos quatro garrafas abertas, contendo certa quantidade de líquido, colocadas sobre a superfície da Terra, nas posições Norte, Sul, Leste e Oeste. Após o desenho da ilustração no quadro (em escala reduzida e não proporcional), ele solicitou que os alunos apontassem para a alternativa que melhor representa o que ocorre com o liquido dessas garrafas em cada uma das posições. Acertadamente eles escolheram a alternativa:

OBFP16

Assunto abordado

Hidrostática (Equipotencias Isobáricas)

[collapse]
Solução

 Como mostrado na ideia 02 de física do Noic, a superfície de um líquido em equilíbrio, tendo essa superfície inteira a mesma pressão, deve ter formato tal que todo ponto dela tem a mesma energia potencial por unidade de massa. É sabido que a energia potencial gravitacional depende apenas da distância entre os dois corpos interagentes, sendo os corpos um pedaço da superfície do líquido e o centro da terra (equivalente à interação terra-líquido). Desta maneira, para a superfície ser equipotencia, todos os pontos do líquido estão à mesma distância do centro da terra, estando eles numa secção de esfera com o centro no centro da terra, e, em boa aproximação, paralelos ao horizonte (chão) onde eles estão, como mostra o item D

[collapse]
Gabarito

Item D

[collapse]

Questão 4:

A altura do primeiro satélite artificial, o Sputnick, lançado pela União Soviética em 1957, alcançava uma altura máxima de 950,0km. Hoje, a altura de um satélite estacionário, tipo Intelsat, é de, aproximadamente, 36000,0 km. Sabendo-se que as velocidades da luz e do som no ar, são respectivamente, iguais a 3,0 x 10^{8} \frac{m}{s} e 340,0 \frac{m}{s}, podemos afirmar acertadamente que o tempo em segundos, aproximadamente, que decorre entre o instante que você fala por celular, via satélite, com seu amigo e o instante em que ele ouve sua voz, vale:

a) 0,60

b) 0,24

c) 0,48

d) 0,12

e) 0,36

Assunto abordado

Cinemática

[collapse]
Solução

A questão tem basicamente dois pontos importantes. O primeiro é você perceber que o único dado relevante é a velocidade da luz no ar, pois, além do som não se propagar no espaço e não pode chegar no satélite, o sinal que chega até o satélite é uma onda de raio, portanto eletromagnética com velocidade igual à da luz. Desta maneira, chega o segundo ponto, que é perceber que a distância entre você e seu amigo é desprezível em comparação com a altura do satélite, pois a distância máxima entre vocês é cerca de 13000 km, e a distância usual, dado que vocês estão num mesmo país, é cerca de 100 vezes menor que isso. Portanto, o tempo que leva pro sinal chegar do seu telefone até o de um amigo, em boa aproximação, é o tempo que a onda de rádio leva pra chegar no satélite e voltar para você. Desta maneira:

t=\frac{2h}{v}=\frac{2*36000*1000}{3*10^{8}}=0,24 s

Onde o fator 2 apareceu porque você deve contar o tempo de ida e volta da onda, e o fator 1000 na multiplicação para transformar a distância de km para m e você poder cortar essa unidade com o m contido na velocidade da luz dada no enunciado. Desta maneira, o item correto é o item B

[collapse]
Gabarito

Item B

[collapse]

Questão 5:

O Professor Physicson dirige seu carro numa estrada plana e reta, mantendo-se a 72,0 km/h. Uma cerca longa, com postes espaçados em 4,0 m margeia esta estrada. Tomando o automóvel como referencial, pode-se afirmar corretamente que o número de postes que passam pelo carro, por segundo, é de:

a) 3 a 4

b) 7 a 8

c) 20 a 21

d) 5 a 6

e) 72 a 73

Assunto abordado

Cinemática

[collapse]
Solução

O primeiro passo é encontrar a velocidade do carro em metros por segundo, como 3,6 \frac{km}{h} são 1 \frac{m}{s}, então a velocidade do carro é:

v_{carro}=72 \frac{km}{h} \frac{\frac{1 m}{s}}{\frac{3,6 km}{h}}=20 \frac{m}{s}

E, como cada poste está a uma distância de 4m um do outro, o número \eta de postes atravessados por segundo é:

\eta=\frac{1 poste}{4m} \frac{20 m}{s}=5 \frac{postes}{s}

O carro atravessa 5 postes por segundo, contudo, se ele começar em cima de um poste ele vai atravessar um poste a mais, portanto ele percorre de 5 a 6 postes, como dito no item D

[collapse]
Gabarito

Item D

[collapse]

Questão 6:

Um observador A, em cima da carroceria de um caminhão que se desloca em linha reta com uma velocidade constante de 10,0 \frac{m}{s}, lança verticalmente para cima uma pedra. Nesse instante, outro observador B, sentado à margem da estrada, vê o caminhão passar, observando o lançamento da pedra. Desprezando-se todas as resistências que atuam sobre a pedra lançada, é possível afirmar-se que os valores das velocidades da pedra quando ela atinge o ponto mais alto de sua trajetória, em relação a cada observador, vale, respectivamente:

a) V_{A} = 0 \frac{m}{s} e V_{B} = 10,0 \frac{m}{s}

b) V_{A} = 10,0 e V_{B} = 10,0

c) V_{A} = 0 \frac{m}{s} e V_{B} = 0

d) V_{A} = 10,0 e V_{B} = 0 \frac{m}{s}

e) V_{A} = 0 e V_{B} = 5,0 \frac{m}{s}

Assunto abordado

Cinemática (Relatividade de Galileu)

[collapse]
Solução

No referencial do homem no caminhão, a pedra começará a subir até o ponto em que ela vai chegar a sua altura máxima e voltar para ele. Na altura máxima a velocidade vertical da partícula deve ser zero, pois se fosse positiva a altura não seria máxima, já que a partícula ainda teria mais a subir, e se fosse negativa também não, pois voltando no movimento existiria posição em que a partícula estivesse mais alta. Desta maneira, o homem no caminhã vê a partícula com velocidade nula. O homem vendo o caminhão se mover, entretanto, vê a partícula se movendo na vertical e horizontal, pois, classicamente, para transformar um movimento de um referencial ao outro basta que você adicione aos pontos do espaço uma velocidade igual à velocidade relativa entre os referenciais. Desta maneira, enquanto a partícula está parada para o homem no caminhã, vertical e horizontalmente, ela está parada na vertical para o homem na estrada, e com uma velocidade de 10 \frac{m}{s} na horizontal (a velocidade do caminhão). Portanto, o item correto é o item A

[collapse]
Gabarito

Item A

[collapse]

Questão 7:

Considere uma partícula de massa (m) em movimento retilíneo sob a ação de uma força resultante F. Sejam v e a, respectivamente, os vetores velocidade e aceleração dessa partícula, num instante qualquer de movimento. Nas alternativas abaixo, estão indicadas as possíveis direções e sentidos dos respectivos vetores. Identifique a composição incorreta:

OBFP3

Assunto abordado

Dinâmica

[collapse]
Solução

Para um sistema de massa constante, vale a segunda lei de Newton expressa como:

\vec{F}=m\vec{a}

Portanto, o vetor força \vec{F} é múltiplo do vetor aceleração \vec{a}, e como a massa m do sistema é em geral positiva, vale que \vec{F} e \vec{a} tem mesma direção e sentido. Portanto, como no item A a força e aceleração sobre a massa não tem o mesmo sentido, ele é o item incorreto.

[collapse]
Gabarito

Item A

[collapse]

Questão 8:

Um dos grandes problemas descritos pela legislação brasileira para a renovação da Carteira Nacional de Habilitação (CNH) para idosos, acima de 65 anos, refere-se ao tempo de reação dos mesmos. Como sabemos, o tempo médio de reação de um motorista é da ordem de 0,7 s (tempo de reação é o intervalo entre a percepção do sinal vermelho, por exemplo, e o momento de apertar os freios). Se um automóvel pode ser desacelerado a razão de \frac{5m}{s^{2}}, de quanto seria a distância percorrida entre a percepção do sinal vermelho e a parada do carro que vinha com uma velocidade de 36,0 \frac{km}{h}?

a) 10,0 m

b) 7,0 m

c) 6,5 m

d) 13,0 m

e) 17,0 m

Assunto abordado

Cinemática (Torricelli)

[collapse]
Solução

Você pode conseguir a resposta usando a equação de Torricelli. Após ter andando com velocidade constante por um tempo de t=0,7 s, pois ele ainda não conseguiu perceber que ele tinha que freiar para evitar acidentes, o motorista pisa no freio, tal que ele começa a ter sua velocidade mudando no tempo. A distância, por Torricelli, deve respeitar:

v^{2}=v_{o}^{2}-2ad

Onde v é a velocidade final, v_{o} a inicial, a a aceleração e d a distância percorrida. Como ele está parado no final:

d_{freio}=\frac{v_{o}^{2}}{2a}=\frac{100}{2*5}=10 m

E ele andou uma distância em velocidade constante, valendo ela:

d_{uni}=v \Delta t=7m

Portanto, o motorista andou um total de d=d_{uni}+d_{freio}=17m, sendo o item correto o item E

 

[collapse]
Gabarito

Item E

[collapse]

Questão 9:

Um curioso estudante de engenharia aferiu as três dimensões de uma resma (500 folhas) de papel ofício, do tipo A4, encontrando os seguintes valores: 210 mm para a largura, 29,7 cm para o comprimento e 5,2 cm de espessura. Desejando medir o volume de uma folha, um estudante encontrou, aproximadamente, em cm^{3}:

a) 64,9

b) 8,68

c) 86,6

d) 6,49

e) 88,6

Assunto abordado

Noções de geometria espacial (Volume)

[collapse]
Solução

O primeiro passo é colocar todos os comprimentos na unidade de cm, para que o volume obtido esteja em cm^{3}, portanto é adequado transformar 210 mm=21,0 cm. O volume de uma folha é \frac{1}{500} o volume de 500 folhas, portanto, como o volume de um paralelépido é o produto de suas três dimensões:

V_{folha}=\frac{21,0*5,2*29,7}{500} \approx 6,49 cm^{3}

Como dito no item D

[collapse]
Gabarito

Item D

[collapse]

Questão 10:

Uma partícula se move em um sistema de coordenadas xy sob a ação de duas forças, cujos módulos são respectivamente iguais a 30,0 N e 40,0 N. Desprezando-se as resistências oferecidas ao seu deslocamento, o módulo da resultante R das forças aplicadas em Newtons pode assumir valores:

a) R \leq 10,0

b) 10,0 \leq R \leq 70,0

c)  R \leq 70,0

d)  20 \leq R \leq 50,0

e)  R \leq 20,0

Assunto abordado

Vetores (Soma de vetores)

[collapse]
Solução

 A soma de dois vetores \vec{a} e \vec{b} forma um triângulo com o vetor -(\vec{a}+\vec{b}), pois a soma desses três é zero. Portanto, você pode aplicar a desigualdade triangular a esse problema, pois, dado um triângulo de lados a, b e c:

|a+b|=|a|+|b| \geq c \geq |a-b|

Portanto, no nosso caso, onde c é o módulo do vetor |-(\vec{a}+\vec{b})|, a o módulo do vetor \vec{a} e b o módulo do vetor \vec{b}:

|\vec{a}|+|\vec{b}|\geq|-(\vec{a}+\vec{b})|=|\vec{a}+\vec{b}| \geq ||\vec{a}|-|\vec{b}||

Perceba que o termo do meio é o modulo da soma dos dois vetores, \vec{a}+\vec{b}, que é exatamente o termo R que queremos, que é o módulo da soma de duas forças. Portanto, se as forças aplicadas no sistema são \vec{F}_{1} e \vec{F}_{2}, vale:

|\vec{F}_{1}|+|\vec{F}_{2}| \geq R \geq ||\vec{F}_{1}|-|\vec{F}_{2}||

Como no nosso problema, digamos, |\vec{F}_{1}|=40,0 N e |\vec{F}_{2}|=30,0 N, temos:

40+30 \geq R \geq |40-30|=10

E, em Newtons (N):

70 \geq R \geq 10

Como posto no item B

[collapse]
Gabarito

Item B

[collapse]

Questão 11:

Considere que um vagão ferroviário, transportando óleo, movimenta-se da esquerda para a direita, na horizontal. Três situações podem ocorrer:

  • I. O vagão se move com velocidade constante
  • II. O vagão é acelerado para a direita
  • III. O vagão é desacelerado.

Cada um desses casos está associado a uma das figuras a seguir.

OBFP12

As figuras que correspondem, respectivamente, às situações I, II e III, são:

a) N, O, M

b) M, O, N

c) M, N, O

d) O, N, M

e) O, M, N

Assunto abordado

Hidrostática (Equipotencias Isobáricas)

[collapse]
Solução

 Como mostrado no exemplo 2, da ideia 02 de física do Noic, um carro sendo acelerado de a no eixo x, sob efeito de um campo gravitacional g, tem sua superfície respeitando a equação:

gy+ax=cte

E isto é uma equação de reta com coeficiente angular -\frac{a}{g}, portanto, para acelerações positivas a superfície é uma reta decrescente em x como no caso O, uma reta crescente para acelerações negativas (desacelerações) como no caso N, e uma reta constante para o caso de aceleração 0, e portanto velocidade constante do carro, como no caso M.  Desta maneira, pode-se identificar que as situações se referem a, respectivamente, os casos MO, N, como diz o item B

[collapse]
Gabarito

Item B

[collapse]

Questão 12:

Durante a exibição de um vídeo em sala de aula sobre paraquedismo, o professor Physicson explicou aos seus alunos sobre os diversos parâmetros que devem ser levados em consideração no efeito que a resistência do ar produz sobre corpos em movimento, em especial sobre o conjunto Paraquedas e o paraquedista. A expressão que define esses parâmetros é dada por F = k v^{2} , onde F representa a força de resistência oferecida pelo ar sobre o corpo em movimento, v é a velocidade do corpo imerso nesse fluido e k representa uma constante que depende de outros fatores como Área de contato do corpo com o ar, coeficiente de arrasto, etc. A partir de uma análise dimensional, pode-se garantir que essa constante k possui a seguinte unidade de medida:

a) Kg.m

b) m/s

c) J/s

d) N.s

e) Kg/m

Assunto abordado

Análise Dimensional

[collapse]
Solução

 Igualdade de duas grandezas em física exige mais que uma igualdade numérica, mas também uma de dimensão, i.e, uma força só pode ser igual a uma expressão com dimensão de força. Desta maneira, sendo a força de resistência do ar uma força, ela deve ter dimensão de força, e aplicando a segunda lei de newton:

F=ma=-kv^{2}

E aplicando o operador que retorna a dimensão dos dois lados:

[m] [a]=[k] [v]^{2}

Agora, substituindo a dimensão de cada grandeza, sendo [L] dimensão decomprimento, [T] de tempo e [M] de massa:

[k]=\frac{[m][a]}{[v]^{2}}=\frac{[M] \frac{[L]}{[T]^{2}}}{\frac{[L]^{2}}{[T]^{2}}}

[k]=\frac{[M]}{[L]}

Sendo, portanto, o item E, pois Kg e m são, respectivamente, as medidas de massa e comprimento do SI.

[collapse]
Gabarito

Item E

[collapse]

Questão 13:

"A questão que minha mente formulou foi respondida pelo radiante céu do Brasil". Com essa afirmação, o físico alemão Albert Einstein (1879-1955) apresentava ao mundo a comprovação da sua Teoria da Relatividade Geral, a partir dos resultados fotográficos realizados pela Royal Astronomical Society de Londres, durante o eclipse total do Sol em 29 de maio de 1919, na cidade de Sobral, Ceará. Num eclipse como esse, o Sol:

a) Se apaga

b) Se oculta atrás de um planeta

c) Se oculta atrás da Lua

d) É ocultado pela sombra da terra

e) Brilha mais

Assunto abordado

Óptica Geométrica (Eclipses)

[collapse]
Solução

 O eclipse solar acontece quando a lua passa em frente ao sol, cobrindo parcial ou totalmente a figura dele. Portanto, o item correto é o item C

Obs: É importante citar que a Lua consegue cobrir o Sol totalmente para alguns observadores na Terra, e isso acontece porque, apesar da Lua ser muito menor que o Sol, a Lua está muito mais perto da terra do que o sol, fazendo o tamanho angular dela ser maior, apesar do tamanho real ser menor.

[collapse]
Gabarito

Item C

[collapse]

Questão 14:

Cada alternativa abaixo contém um enunciado de um teorema ou de uma lei da física ou uma proposta decorrente de sua análise. Dentre elas existem uma que não corresponde corretamente a uma realidade física. Identifique-a:

a) O trabalho realizado sobre um corpo, pela força resultante, é igual a sua variação de energia mecânica

b) Calor e temperatura são grandezas físicas diferentes

c) A lei da inércia é valida para sistemas mecanicamente isolados

d) As leis de Newton são as bases da mecânica clássica

e) Quando um móvel em movimento retilíneo e uniforme sofre deslocamentos iguais em tempos iguais, dizemos que a resultante das forças que nele atua é nula

Assunto abordado

 Dinâmica (Conceitos)

[collapse]
Solução

O trabalho realizado sobre um corpo é igual à variação de sua energia cinética, que não é em geral é igual à variação de sua energia mecânica, pois estas só são iguais se o corpo não tem forças conservativas agindo sobre ele. Uma força conservativa é uma força que tem energia potencial associada, e nem todas tem. Por exemplo, seja um corpo sob efeito da resistência do ar. O trabalho dessa força será igual à variação de sua energia mecânica, pois a energia mecânica desse corpo é igual à sua cinética, já que não existe energia potencial associada à força de resistência do ar. Contudo, no exemplo de um corpo em queda livre, a energia mecânica é conservada, mesmo com o trabalho da força peso fazendo a energia cinética do corpo aumentar constantemente. Portanto, o item A está incorreto.

[collapse]
Gabarito

Item A

[collapse]

Questão 15:

Durante uma aula sobre as leis de Newton, o professor Physicson como num truque de mágica, puxou rapidamente a toalha de uma mesa sem derrubar os copos que estavam sobre ela. Ao chamar a atenção dos alunos para o fato dos copos permanecerem em repouso, o professor estava evidenciando de forma experimental:

a) A Lei da ação e reação

b) A Lei fundamental da dinâmica

c) A Lei da gravitação universal

d) A Lei da Inércia

e) A lei de Hooke

Assunto abordado

 Dinâmica (Conceitos)

[collapse]
Solução

O professor evidenciou a lei da inércia, pois como a força de atrito da toalha sobre os copos atuou durante um tempo desprezível, pode-se considerar como se quase não existesse força atuando sobre os copos, e portanto, pela lei da inércia, eles tendem a manter sua velocidade, que, no caso, é nula. Desta maneira, o item D é o correto.

[collapse]
Gabarito

Item D

[collapse]

Questão 16:

Ainda durante as aulas sobre as leis de Newton, o professor formou dois grupos com quatro alunos extremidades da corda, com massa desprezível, o professor colocou o grupo A e, na outra extremidade, o grupo B. O grupo A conseguiu arrastar o grupo B, vencendo a batalha. Dos vários comentários realizados e tomando as leis de Newton como referência, identifique a(s) proposição(ões) que explica(m), adequadamente, a brincadeira realizada:

  • I. O grupo A exerceu mais força na corda do que o grupo B
  • II. O grupo A exerceu mais força sobre o solo do que o grupo B
  • III. A força resultante sobre a corda é nula

a) II e III estão corretas

b) Apenas a II está correta

c) I e III estão corretas

d) Apenas III está correta

e) Todas estão corretas

Assunto abordado

 Dinâmica (Conceitos)

[collapse]
Solução

Por não ter massa, a corda não pode estar sob ação de força resultante, portanto a força que ambos grupos fazem nela é a mesma. Contudo, os grupos podem ser arrastados ou não pois existe uma força de atrito entre eles e o solo. A força de atrito é contrária à que a corda faz no grupo, e se ela for menor que a força da corda, eles são arrastados. Se ela for igual, eles se mantém parados. Como o grupo A ficou parado, a força do solo sobre eles é igual à da corda, e como o B foi arrastado, a força do solo nelos é menor que a da corda, e, portanto, menor que a de A. Portanto, a preposição II III estão corretas, e o item A é o correto.

[collapse]
Gabarito

Item A

[collapse]

Questão 17:

Um carro com massa m desloca-se em linha reta com uma aceleração máxima de 3,0 \frac{m}{s^{2}}. Para que esse carro reboque um segundo carro com o dobro de sua massa e em linha reta, realizando o mesmo trabalho, deverá ter uma aceleração máxima de:

a) 3,0 \frac{m}{s^{2}}

b) 1,5 \frac{m}{s^{2}}

c) 2,5 \frac{m}{s^{2}}

d) 1,0 \frac{m}{s^{2}}

e) 6,0 \frac{m}{s^{2}}

Assunto abordado

 Dinâmica (Leis de Newton)

[collapse]
Solução

O Trabalho das duas forças deve ser o mesmo, bem como a distância percorrida, logo, as forças devem ser iguais.

F_1=F_2

m_{1}*3,0 = m_{2} a e m_{2}=3m_{1}

Onde usamos a segunda lei de Newton na primeira equação, e a condição de que a massa no segundo caso é do carro mais duas vezes a massa dele (termo da massa rebocada). Portanto:

a=1,0 \frac{m}{s^{2}}

E o item correto é o item D

[collapse]
Gabarito

Item D

[collapse]

Questão 18:

A necessidade de economizar energia tem sido um dos assuntos mais debatido em todos os fóruns internacionais sobre produção de energias limpas e de recursos renováveis. Dentre as várias fontes citadas nas proposições abaixo, uma é dita como não renovável, identifique-a:

a) Luz solar

b) Ventos

c) Marés

d) Petróleo

e) Quedas d'água

Assunto abordado

Formas de energia

[collapse]
Solução

Uma fonte de energia não-renovável é aquela que se dá por transformações de um recuso finito, como é o caso do gás natural, carvão mineral e o petróleo. Portanto, a alternativa é o item D.

[collapse]
Gabarito

Item D

[collapse]

Questão 19:

Durante uma corrida de 5,0 km, um atleta profissional fez o percurso em 20 minutos. Dessa forma pode-se afirmar corretamente que a máxima velocidade que ele desenvolveu foi necessariamente:

a) Maior do que 4,17 \frac{m}{s}

b) Menor do que 4,0\frac{m}{s}

c) Compreendida entre 3,5 \frac{m}{s} e 4,0 \frac{m}{s}

d) Igual a 10 \frac{m}{s}

e) Igual a 4,0 \frac{m}{s}

Assunto abordado

Cinemática

[collapse]
Solução

Uma possível afirmação é que a velocidade máxima do atleta é, necessariamente, maior que sua velocidade média. Então,

v_{max}> \frac{\Delta S}{\Delta t}

v_{max}> \frac{5 x 10^3 m}{20x 60 s}

v_{max}> 4,17 \frac{m}{s}

Portanto, o item A está correto.

[collapse]
Gabarito

Item A

[collapse]

Questão 20:

Para explicar sobre o processo de conservação e transferência de energia entre corpos, uma pessoa realiza três atividades sobre um corpo de massa m, transferindo-lhe as energias E_{1}, E_{2} e E_{3}, respectivamente:

  • I. Elevar o corpo a uma altura de 1,0 m acima do solo
  • II. Lançar o corpo, a partir do repouso, sobre um plano horizontal sem atrito, variando sua velocidade para 1,0 \frac{m}{s}
  • III. Aplicar-lhe uma força constante, produzindo um deslocamento de 1,0 m ao longo de um plano horizontal, sem atrito, com aceleração constante de 1,0 \frac{m}{s^{2}}.

Identifique a alternativa que melhor expressa à relação entre as energias transferidas ao corpo durante estas atividades é:

a) E_{1} > E_{3} > E_{2}

b) E_{3} > E_{2} > E_{1}

c) E_{3} > E_{1} > E_{2}

d) E_{1} > E_{2} > E_{3}

e) E_{2} > E_{3} > E_{1}

Assunto abordado

Dinâmica (Energia)

[collapse]
Solução

Resolveremos o problema analisando a energia do corpo em cada situação. No caso I, o corpo vai ter energia puramente potencial, por não estar se movendo, e portanto a sua energia pode ser dada por:

E_{1}=mgh=m*10*1=10m

No caso II, o corpo tem energia puramente cinética, e portanto sua energia é dada por:

E_{2}=\frac{mv^{2}}{2}=\frac{m 1^{2}}{2}=\frac{m}{2}

E no caso III, a energia que o corpo tem vem do trabalho realizado sobre ele, que é simplesmente a força aplicada vezes o deslocamento do corpo sob ação dessa força:

E_{3}=F*d=ma*d=m*1*1=m

Como m é um número positivo, então:

10m>m>\frac{m}{2}

E, portanto:

E_{1}>E_{3}>E_{2}

E o item correto é o item A

Obs: Perceba que a energia do corpo no caso III é puramente cinética, mas essa energia foi provida inteiramente pelo trabalho de forças externas. Por Torriceli, é sabido que, estando o corpo parado de início:

v^{2}=2ad

E, usando isso na energia cinética do corpo:

E_{3}=\frac{mv^{2}}{2}=mad=Fd=W

Onde W é o trabalho realizado sobre ele

[collapse]
Gabarito

Item A

[collapse]