OBF 2019 - Primeira Fase (Nível 3)

Escrito por Antônio Ítalo

Questão 1:

O Professor Physicson dispõe de dois frascos exatamente iguais. Na sala de aula, ele coloca em um deles, um litro de água (A) e no outro meio litro de água e meio litro de um líquido não identificado (L), que não se mistura com a água. Em seguida os frascos são colocados nos pratos de uma balança bem regulada e sensível. No quadro, o
Professor desenha três situações da balança, possíveis ou não:

Em relação às situações esquematizadas acima, qual a alternativa que representa corretamente a situação visualizada no experimento.
a) Tanto a 2 como a 3 são possíveis;
b) Tanto a 1 como a 3 são possíveis;
c) Somente a 1 é possível;
d) Tanto a 1 como a 2 são possíveis;
e) Somente a 2 é possível.

Assunto Abordado

Conceitos de Hidrostática

[collapse]
Solução

Sabemos que o tipo de balança apresentado na figura pende para o lado do prato que estiver com maior massa (considerando que os dois pratos são equidistantes), sendo assim, sabemos que se o líquido L possuir maior massa específica \rho que a água (Sendo massa específica a razão entre a massa e o volume do líquido) a balança penderá para o lado com o líquido, pois meio litro de água "cancelará" meio litro de água e o meio litro do líquido L, por possuir o mesmo volume que o meio litro de água restante do outro lado, terá maior massa. O contrário ocorrerá caso L seja menos denso que a água. Devemos além disso levar em consideração que líquidos mais densos ficam mais abaixo que líquidos menos densos quando colocados no mesmo recipiente. Analisemos então cada uma das situações:

Situação 1: Na figura, vemos que a balança pende para o lado com o líquido L, o que indica que a densidade do líquido L é maior que a densidade da água, entretanto, vemos o líquido L sobre a água no recipiente, o que indica que a densidade do líquido L é menor que a densidade da água, sendo assim a situação é contraditória e impossível.

Situação 2: Na figura, vemos que a balança pende para o lado com o líquido L, o que indica que a densidade do mesmo é maior que a da água, entretanto, diferentemente da situação 1, a água está acima do líquido L, indicando também que o líquido L possui maior densidade que a água. Sendo assim, essa situação é condizente e possível.

Situação 3Na figura, vemos que a balança pende para o lado que não possui o líquido L, o que indica que a densidade do mesmo é menor que a densidade da água, entretanto, vemos que o líquido L está abaixo da água no recipiente, o que indica que sua densidade é maior que a da água. Ou seja, assim como a primeira situação, essa situação é contraditória e impossível.

Item E

[collapse]
Gabarito

Item E

[collapse]

Questão 2:

Uma bola homogênea de peso (p) e densidade (d_{B}) é presa ao fundo de um recipiente vazio por um fio, capaz de suportar uma tração máxima de 4p. Ao colocarmos um líquido de densidade constante (d_{L}=4d_{B}) dentro do recipiente aberto, percebe-se que a bola passa a ser impulsionada para cima, tracionando o fio que a prende ao fundo do recipiente. Nesse sentido, ao deixar a bola completamente imersa:
a) O fio não se arrebenta e o equilíbrio se estabelece;
b) O fio se arrebenta e a bola sobe ficando com metade do seu volume imerso;
c) A bola descerá até o fundo do recipiente;
d) Nenhuma conclusão poderá ser obtida porque não se sabe a massa da bola;
e) O fio se arrebenta e a bola sobe ficando com 25% do seu volume emerso.

Assunto Abordado

Hidrostática

[collapse]
Solução

Suponhamos uma situação de equilíbrio em que a bola está completamente submersa, nessa situação teremos 3 forças agindo na bola: O empuxo, o peso e a tração. Sabemos que no equilíbrio \sum \vec{F_{i}}=\vec{0}, portanto:

p+T=E

Mas sabemos também que o empuxo é o peso do fluido deslocado, sendo assim:

E=d_{L}Vg=4d_{B}Vg

E sabemos também que:

p=d_{B}Vg

Substituindo, temos:

T=3d_{B}Vg=3p

Como T<4p, teremos que a corda não se romperá, portanto, item A.

[collapse]
Gabarito

Item A

[collapse]

Questão 3:

Na figura abaixo um nadador está na ponta do trampolim que é fixo em B e A. Se AB = 1,0 m, AC = 2,0 m e considerando o peso do nadador igual a P e desprezível o peso do trampolim, podemos acertadamente prever que os módulos das reações, no trampolim, nos pontos A e B, são respectivamente iguais a:


a) 2P para cima e 2P para baixo;
b) 2P para cima e 3P para baixo;
c) 3P para baixo e 2P para cima;
d) 3P para cima e 2P para baixo;
e) 3P para cima e 3P para baixo.

Assunto Abordado

Estática

[collapse]
Solução

Nessa resolução, assumiremos que ambas as forças apontam para cima e, caso obtenhamos um resultado negativo, saberemos que uma delas aponta para baixo. Para começar, escrevamos a condição de equilíbrio linear para o trampolim:

\sum \vec{F_{i}}=\vec{0} \Rightarrow N_{A}+N_{B}-P=0

N_{A}+N_{B}=P

Além disso, devemos escrever a condição de equilíbrio rotacional:

\sum \vec{\tau_{i}}=\vec{0}

Escolheremos como origem para cálculo do torque o ponto C e assumiremos como positivo um torque no sentido horário:

N_{B}(AB+AC)+N_{A}AC=0

Substituindo AB e AC, temos:

3N_{B}+2N_{A}=0

Logo:

N_{B}+2(N_{A}+N_{B})=0 \Rightarrow N_{B}=-2P

Logo:

N_{A}=3P

Sendo assim, N_{A} vale 3P para cima e N_{B} vale 2P para baixo, item D.

[collapse]
Gabarito

Item D

[collapse]

Questão 4:

O Professor de física para explicar sobre sistemas isolados e conservativos projetou a imagem abaixo no Datashow da sala. A imagem sugere que o vagão pode deslocar-se sem atrito sobre trilhos horizontais e retilíneos. Dentro do vagão, José e João puxam molas presas a paredes opostas. Para essa situação, o professor pediu aos alunos que respondessem as seguintes proposições, colocando V (verdadeiro) ou F (falso) nas mesmas.


I. Quando apenas José puxa a mola, o vagão passa a mover-se para a direita, sob a
ação da força aplicada à mola;
II. Quando apenas João puxa a mola, o vagão move-se para a direita, sob a ação da
força aplicada à mola;
III. Quando ambos aplicam forças às molas, o vagão só não se move se as forças
aplicadas forem de mesma intensidade.
a) Todas são verdadeiras;
b) Todas são falsas;
c) Apenas I e III são verdadeiras;
d) Apenas III é verdadeira;
e) Apenas II e III são verdadeiras.

Assunto Abordado

Leis de Newton

[collapse]
Solução

Na resolução dessa questão consideraremos que a maneira com que José e João puxam a mola é ao se manterem fixos em relação ao vagão sem se deslocarem. Sendo assim, teremos duas forças agindo horizontalmente nele: O atrito e a força elástica, que devem ser iguais em módulos, mas possuírem sentidos opostos para que eles se mantenham parados. Da mesma forma, a reação dessas forças age no vagão e, por serem opostas às que agem nos garotos, também se cancelam, mantendo o vagão parado independentemente de quem puxe a mola. Note que se um deles se deslocasse para a direita em relação ao vagão, independentemente de qual o vagão se deslocaria para a esquerda e vice versa. Resumindo, todos os itens estarão errados por conta disso. Item B.

[collapse]
Gabarito

Item B

[collapse]

INSTRUÇÕES PARA A QUESTÃO 05.

Na figura a seguir, R é um recipiente cilíndrico de altura H, inicialmente vazio, C é um
corpo sólido e maciço, de densidade igual a 0,50 g/cm^{3} e M é uma mola ideal de
constante elástica igual a K.

Questão 5:

Enchendo-se de água (densidade igual a 1,0 g/cm^{3}) o recipiente R, determine a intensidade da força elástica que atua na mola, em Newtons, quando metade do corpo C estiver imerso: (considere que durante este evento a mola fica sempre na vertical).
a) 0,5;
b) 5,0;
c) 0,0;
d) 1,0;
e) 10,0;

Assunto Abordado

Hidrostática

[collapse]
Solução

Sabemos que a situação de equilíbrio ocorre quando:

\sum \vec{F_{i}}=\vec{0}

Assumindo que a força elástica atuando no bloco é para cima, temos:

F_{el}+E=P

Ou seja:

F_{el}=P-E

Logo:

F_{el}=0,50.Vg-1.0,5.V.g

F_{el}=0 N

Item C.

[collapse]
Gabarito

Item C

[collapse]

Questão 6:

Muitos anos antes do nascimento de Isaac Newton (1643 - 1727) o grande pintor e
cientista italiano Leonardo da Vinci (1452 - 1519) afirmou: “Se uma força desloca certo
corpo durante um determinado intervalo de tempo a certa distância, esta mesma força
deslocará a metade deste corpo nesta mesma distância em duas vezes menos tempo”.
Você concorda com essa afirmação?

a) Não, mas em \sqrt{2} vezes menos tempo;
b) Sim, mas em 0,5 vezes menos tempo;
c) Sim, mas em 4 vezes menos tempo;
d) Não, mas em 2 vezes mais tempo;
e) Não, mas em 0,5 vezes mais tempo.

Assunto abordado

Segunda lei de Newton (F=ma)

[collapse]
Solução

Pela segunda lei de Newton:

F=ma\to a=\frac{F}{m}

Sabemos que a distância percorrida por um corpo em M.U.V é:

d=\frac{1}{2}at^2=\frac{1}{2}\frac{F}{m}t^2

Pelo enunciado, a distância e a força nas duas situações são iguais, logo:

\frac{Ft_1^2}{2m_1}=\frac{Ft_2^2}{2m_2}

Como m_1=2m_2:

\frac{t_1}{\sqrt2}=t_2

[collapse]
Gabarito

item A

[collapse]

Questão 7:

Que força horizontal mínima (F), aproximadamente, é aplicado sobre um corpo de massa 2,0 kg, conforme a figura, para que o mesmo se desloque à velocidade constante, subindo sobre o plano inclinado fixo (\alpha = 30^{\circ}), sabendo-se que o coeficiente de atrito entre suas superfícies de contato vale 0,3. Considere g = 10,0 m/s^{2}, sen(30^{\circ}) = 0,5 e cos30^{\circ} = 0,87.


a) 36,14 N
b) 18,0 N
c) 31,21 N
d) 42,81 N
e) 21,14 N

Assunto Abordado

Leis de Newton

[collapse]
Solução

Definamos como eixos x e y os eixos paralelo e perpendicular a rampa, respectivamente, que são positivos para cima. Teremos uma situação de equilíbrio dinâmico, ou seja, mais uma vez vale:

\sum \vec{F_{i}}=\vec{0}

Sendo que devemos ter cuidado com o sentido da força de atrito, que é contrária ao deslizamento entre as superfícies, como o enunciado afirma que o bloco estará subindo, o atrito deve ser antiparalelo ao eixo x, logo:

mgsen{\alpha}+Fat=Fcos{\alpha}

E:

mgcos{\alpha}+Fsen{\alpha}=N

Sendo que, no caso cinético:

Fat=\mu N

Substituindo:

mgtan{\alpha}+\mu(mg+Ftan{\alpha})=F

Logo:

F=\frac{mg(\mu+tan{\alpha})}{1-\mu tan{\alpha}}

Substituindo \mu=0,3; tan{\alpha}=0,57; g=10,0 m/s^{2} e m=2,0 kg:

F\approx 21,14 N

Item E.

[collapse]
Gabarito

Item E

[collapse]

Questão 8:

Durante uma aula sobre queda livre de corpos próximos à superfície da terra, um
dos alunos do Professor Physicson perguntou:
“Professor, qual o peso equivalente que uma pedrinha de massa 0,5 kg teria ao chega
ao solo, caindo em queda livre do 5°
andar de um edifício?”
Para responder a essa pergunta, o Professor escreveu no quadro quatro possíveis
respostas:
I. O peso da pedra não varia pelo fato de ela estar em repouso ou caindo;
II. Considerando a altura total igual a 10,0 m, seria de 50,0 N;
III. O peso da pedra varia conforme o solo, se ele é fofo ou duro;
IV. A força que a pedra exerce sobre o solo depende se ele é fofo ou duro.
Analisando as afirmações, podemos acertadamente afirmar que:

a) Somente III e IV estão corretas;
b) Somente II e III estão corretas;
c) Somente I e IV estão corretas;
d) Todas estão corretas;
e) Todas estão erradas.

Assunto abordado

Queda livre e colisões

[collapse]
Solução

Não fica claro pelo enunciado o que o aluno quis dizer por "peso equivalente". Supõe-se que seja simplesmente o peso da partícula. Analisemos cada afirmativa:

1) Verdadeiro. O peso, que a é a força de interação gravitacional entre a partícula e a Terra, só depende de constantes e da distância até o centro da Terra.

2) Falso. Nas proximadades da superfície da Terra é a gravidade é tida como constante e igual a 10\frac{m}{s^2}. Portanto, o peso mg=5 N

3) Falso. Contradição direta de (1)

4) Verdadeiro. A força sentida pelo solo está diretamente relacionada com a variação da quantidade de movimento e o tempo de contato durante o choque. Pelo teorema do Impulso: F_{mdia}=\frac{m\Delta{V}}{\Delta{t}}

A velocidade da partícula após o choque é relacionada com a velocidade logo antes do choque através do coeficiente de restituição e, uma constante que depende do material:

|V_1|=e|V_0|=e\sqrt{2gh}\to \Delta{V}=V_1-V_0=(e+1)\sqrt{2gh}

onde a h é a altura do prédio. O tempo de contanto também depende do material. Intuitivamente, é de se esperar que um material duro tenha um tempo mais curto do que uma material fofo. Logo:

F_{mdia}=\frac{m(e+1)\sqrt{2gh}}{\Delta{t(e)}}

onde o subscrito em \Delta{t} nos diz que o tempo, em geral, é função do coeficiente de restituição.

[collapse]
Gabarito

item C

[collapse]

Questão 9:

O gráfico abaixo representa a pressão (P) de uma amostra de um gás ideal em função de seu volume (V). As temperaturas absolutas da amostra do gás, correspondentes aos pontos (a), (b) e (c) do gráfico, são, respectivamente, T_{A}, T_{B} e T_{C}. Identifique nas proposições qual das seguintes relações é correta:


a) T_{A} < T_{B} < T_{C}
b) T_{A} > T_{B} > T_{C}
c) T_{A} = T_{B} < T_{C}
d) T_{A} = T_{B} > T_{C}
e) T_{B} = T_{C} < T_{A}

Assunto Abordado

Gases ideais

[collapse]
Solução

Essa questão é facilmente resolvida pelo uso da equação de Clapeyron:

PV=nRT

Ou seja, a temperatura em certo ponto do diagrama é proporcional ao produto do volume e da pressão. Note que o ponto a tem tanto o menor volume quanto a menor pressão, logo tem a menor temperatura. Em seguida, o ponto b tem a mesma pressão do ponto a, mas seu volume é maior, então possui uma temperatura maior que a dele, contudo, o ponto c possui mesmo volume que o ponto b e maior pressão, sendo assim, tem temperatura maior que a do ponto b. Sendo assim, concluímos:

T_{A}<T_{B}<T_{C}

Item A.

[collapse]
Gabarito

Item A

[collapse]

Questão 10:

Em 1873, J. Maxwell (1831 - 1879), físico e matemático escocês, publicou o “A Treatise on Electricity and Magnetism”, no qual apresentou a formulação matemática das leis empíricas do eletromagnetismo, conhecidas como as equações de Maxwell, terminando por conjecturar com uma afirmação que tinha feito entre 1861 e 1862, em que dizia que a “a luz é uma onda eletromagnética que se propaga no meio luminífero”. Dessa forma, podemos entender que a natureza de uma onda eletromagnética se caracteriza:
a) Pela existência de um campo magnético e que se propaga a velocidade da luz;
b) Pela interdependência entre dois campos, elétrico e magnético, perpendiculares entre
si e que se propaga com a velocidade da luz;
c) Pela existência de um campo elétrico e que se propaga a velocidade da luz;
d) Pelo fluxo de elétrons que se desloca com a velocidade da luz;
e) Pelo fluxo de elétrons que se desloca com a velocidade bem menor que a velocidade
da luz.

Assunto Abordado

Ondas eletromagnéticas

[collapse]
Solução

Para resolução dessa questão é necessário conhecimento prévio sobre ondas eletromagnéticas, ou conhecimento das equações de Maxwell e de como torná-las em equações de ondas para poder demonstrar as propriedades de ondas eletromagnéticas. Alguns fatos que podem ser demonstrados sobre ondas eletromagnéticas no vácuo são:

  1. Ondas eletromagnéticas se propagam com a velocidade c=\frac{1}{\mu_{0}\varepsilon_{0}} no vácuo, independentemente do referencial inercial escolhido.
  2. Ondas eletromagnéticas são compostas por um campo magnético e um campo elétrico, que oscilam com o tempo em uma determinada posição.
  3. Os campos elétricos e magnéticos de uma onda eletromagnética estão em fase.
  4. A razão entre as amplitudes dos campos elétricos e magnéticos de uma onda eletromagnética é c.
  5. Uma onda eletromagnética é transversal, ou seja, \vec{E} e \vec{B} são mutuamente perpendiculares à direção de propagação.
  6. O campo elétrico e o campo magnético de uma onda eletromagnética são perpendiculares entre si.

Com base nos fatos 2 e 6, temos que o item correto é o item B. Note que o que se propaga com a velocidade c é a onda, ou seja, os distúrbios no campo eletromagnético.

[collapse]
Gabarito

Item B

[collapse]

Questão 11:

Na tabela abaixo estão indicados o comprimento e a secção reta de cinco pedaços de fios de cobre (1, 2, 3, 4 e 5), com os quais se deseja utilizar num circuito simples, constituído de uma pilha em série com uma lâmpada pequena e uma chave liga-desliga. Após as cinco montagens com a chave ligada, constatou-se que em duas situações a lâmpada apresentou o mesmo brilho. Identifique em qual dos pares isso foi possível:


a) 2 e 3
b) 1 e 3
c) 3 e 4
d) 1 e 4
e) 1 e 2

Assunto Abordado

Leis de Ohm

[collapse]
Solução

A lâmpada apresentará o mesmo brilho se estiver submetida à mesma d.d.p., ou seja, o circuito precisa ser idêntico. Para que o circuito seja idêntico, a resistência devido aos fios deve ser a mesma e, pela segunda lei de Ohm:

R \propto \frac{L}{A}

Como os fios são feitos do mesmo material, temos que analisar somente essa razão, que é igual somente nas montagens 1 e 4 com valor igual à 2 cm^{-1}. O item correto é o Item D.

[collapse]
Gabarito

Item D

[collapse]

Questão 12:

Em 1924, de Broglie (1892 - 1987) publicou um trabalho nos Comptes Rendus de l’Academie des Sciences de Paris, no qual complementou sua ideia sobre a “onda de matéria” associada a uma partícula não-relativista de massa (m), encontrando as relações fundamentais entre comprimento de onda (\lambda) e velocidade (v). Posteriormente, na física quântica, essa relação ficou conhecida como o principio da dualidade ondapartícula, ou seja, o princípio propõe que partículas de matéria, como os elétrons, podem comportar-se como ondas de maneira similar à luz, que por sua vez são constituídas de partículas chamadas de fótons. Relacionando o texto acima com outros conhecimentos de física, analise as proposições:
I. Considerando a dualidade onda-partícula para a luz, verifica-se que a energia
dos fótons associados à luz no vácuo é inversamente proporcional ao
comprimento de onda;
II. Considerando a dualidade onda-partícula para a luz, verifica-se que a quantidade
de movimento linear dos fótons é diretamente proporcional a frequência da luz no
vácuo;
III. Para explicar o efeito fotoelétrico supõe-se que a energia da luz emitida é
continua;
IV. Para explicar o efeito fotoelétrico supõe-se que a energia da luz emitida é
quantizada.
Selecione a alternativa que apresenta a(s) proposição (oes) correta(s):
a) I, II e III;
b) I, II e IV;
c) Somente I;
d) Somente II;
e) I e II.

Assunto Abordado

Conceitos de Física Quântica

[collapse]
Solução

Item I:

A energia de um fóton é dada por:

E=hf

Mas sabemos que para uma onda:

f \propto \frac{1}{\lambda}

Logo:

E \propto \frac{1}{\lambda}

Tornando o item verdadeiro.

Item II:

Sabemos que a quantidade de movimento de um fóton é dada por:

p=\frac{h}{\lambda}

Sendo que:

\lambda \propto \frac{1}{f}

Logo:

p \propto f

Tornando o item verdadeiro.

Item III:

Esse item é incorreto pois a ideia do fóton surgiu justamente como um pacote de energia quantizada.

Item IV:

Este item está correto, sendo que cada fóton carregará uma energia proporcional à sua frequencia.

Temos então que o item correto é o Item B.

[collapse]
Gabarito

Item B

[collapse]

Questão 13:

O circuito elétrico esquematizado abaixo foi proposto durante um experimento realizado no laboratório pelo professor, com o objetivo de reforçar alguns conceitos da eletrodinâmica. Os amperímetros ideais são colocados em série com os resistores. No primeiro resistor (R_{1} = 4,0 \Omega), ele indica 10,0 A de corrente, enquanto no segundo resistor (R) a corrente medida vale 6,0 A. Para essa situação, deseja-se saber os valores da corrente no resistor de 2,0 \Omega, o valor da resistência (R) e o valor da força contra
eletromotriz (\epsilon), considerando todo o circuito como ideal.


a) 4,0 A, 10,0 \Omega e 52,0 volts;
b) 4,0 A, 15,0 \Omega e 42,0 volts;
c) 2,0 A, 5,0 \Omega e 26,0 volts;
d) 2,0 A, 10,0 \Omega e 26,0 volts;
e) 8,0 A, 10,0 \Omega e 100,0 volts;

Assunto Abordado

Circuitos elétricos

[collapse]
Solução

Para encontrar a corrente passando pelo resistor de 2 \Omega, podemos usar a lei dos nós:

10 A = I+6 A

I=4 A

Para encontrar a resistência R, podemos escrever que a soma das diferenças de potenciais na malha da esquerda é zero:

100 V -4 \Omega . 10 A -6 A.R = 0

R=10 \Omega

Agora, para encontrarmos \varepsilon, devemos escrever que a soma das diferenças de potenciais na malha grande é zero:

100 V -4 \Omega . 10 A -\varepsilon-2 \Omega.4 A = 0

\varepsilon=52 V

Logo, o item correto é o item A.

[collapse]
Gabarito

Item A

[collapse]

Questão 14:

Após uma aula de eletrização de corpos, num dia com baixa umidade do ar, o professor realizou algumas experiências eletrostáticas, para em seguida fazer as seguintes afirmações:
I. Atritando-se no cabelo seco de uma aluna dois pentes de plásticos iguais
e pendurando-os por um fio isolante, quando um pente for aproximado do outro,
eles se atraem;
II. Atritando-se um pente de plástico no cabelo seco de uma aluna e
aproximando-o de um filete de água, este filete será atraído pelo pente;
III. Atritando-se um pente de plástico no cabelo seco de uma aluna e
aproximando-o, sem tocar, de pedaços de papel, eles serão repelidos.
Qual a alternativa apresenta uma resposta coerente?
a) Somente I está correta;
b) II e III estão corretas;
c) Somente II está correta;
d) Todas estão corretas
e) Todas estão falsas.

Assunto Abordado

Eletrostática

[collapse]
Solução

Item I:

Esse item está incorreto, pois os pentes adquirirão cargas com mesmo sinal e, consequentemente, se repelirão.

Item II e III:

Essencialmente, esses dois itens são iguais. O que ocorrerá será uma polarização, ou seja, todas as cargas de mesmo sinal da carga obtida pelo pente serão repelidas e as de sinal opostos atraídas, dessa forma, as cargas de sinal oposto estarão mais próximas então a força de atração será mais forte. Portanto, o item II está correto e o item III incorreto.

O item correto é o Item C.

[collapse]
Gabarito

Item C

[collapse]

Questão 15:

O Professor Physicson montou o circuito da figura abaixo com lâmpadas iguais antes de efetuar suas medições, fechando o circuito, ele plotou no quadro para que seus alunos pudessem tirar algumas conclusões a respeito do brilho das lâmpadas. A partir do momento que o circuito foi fechado, podemos acertadamente dizer que:


a) A lâmpada M brilha mais que a lâmpada R;
b) A lâmpada N brilha mais que a lâmpada R;
c) A lâmpada P brilha mais que a lâmpada N;
d) A lâmpada O brilha mais que a lâmpada Q;
e) A lâmpada R brilha mais que a lâmpada O;

Assunto Abordado

Circuitos

[collapse]
Solução

O brilho de uma lâmpada estará diretamente ligado com a potência dissipada pela mesma, perceba que todas as lâmpadas são iguais, portanto, podemos garantir que todas têm uma resistência R_{0}. Sabemos que a potencia dissipada por um resistor será da forma:

P=R_{0}i^{2}

Ou seja, quanto maior a corrente passando por uma das lâmpadas maior será seu brilho.

Chamemos a corrente que passa pela bateria de I. Por simetria, podemos afirmar que a corrente em P,O e Q são iguais à \frac{I}{3}. Da mesma forma, a corrente em R é I e a corrente por M e N é \frac{I}{2}. Como passa maior corrente por R do que por O, R brilhará mais e o item correto é o item E.

[collapse]
Gabarito

Item E

[collapse]

Questão 16:

Considere dois capacitores de capacitância A e B. Quando ligados em paralelo a capacitância equivalente é igual 20,0 \mu F e quando ligados em série, a capacitância equivalente é igual a 1/5 da capacitância A. Assim, podemos afirmar corretamente que os valores de A e B em \mu F, são respectivamente iguais a:
a) 2,0 e 8,0
b) 4,0 e 16,0
c) 16,0 e 4,0
d) 16,0 e 8,0
e) 8,0 e 4,0

Assunto Abordado

Associação de capacitores

[collapse]
Solução

Devemos lembrar que, em paralelo, capacitores se associam de forma que:

C_{eq}=C_{1}+C_{2}

E, em série, capacitores se associam de forma que:

\frac{1}{C_{eq}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}

Temos então que:

C_{A}+C_{B}=20,0 \mu A

E:

\frac{1}{C_{A}}+\frac{1}{C_{B}}=\frac{5}{C_{A}}

Isolando, C_{B}, temos:

C_{B}=\frac{C_{A}}{4}

Logo:

\frac{5C_{A}}{4}=20,0 \mu A

Logo:

C_{A}=16,0 \mu A

E:

C_{B}=4,0 \mu A

Sendo então o Item C o item correto.

[collapse]
Gabarito

Item C

[collapse]

Questão 17:

Comentando sobre as leis de Kepler para o movimento planetário em sala de aula, o Professor Physicson escreveu no quadro quatro indagações:
I- Todos os planetas do nosso sistema solar descrevem órbitas elípticas em torno do Sol,
tomando-o como centro dessas elipses;
II- sabemos que os dias são mais curtos no inverno e mais longos no verão, assim
podemos concluir que o vetor posição da Terra (linha que une esta ao Sol) varre uma
área do espaço menor no inverno do que no verão para o mesmo período de 24 horas;
III- As leis de Kepler não fazem referência à força de interação entre o Sol e os planetas.
Verifique quais as afirmações que estão corretas e assinale a opção correspondente.
a) só a I está correta;
b) Só a II está correta;
c) II e III estão corretas;
d) Só a III está correta;
e) I e III estão corretas.

Assunto Abordado

Leis de Kepler

[collapse]
Solução

Item I:

Esse item está incorreto pois as órbitas são elípticas tendo o sol como um dos focos da elipse.

Item II:

A lei das áreas afirma que independente da distância que o planeta estiver do sol no momento, o vetor posição percorrerá a mesma área no mesmo período de tempo. Isso equivale a dizer que a velocidade areolar do planeta em relação ao sol é constante. Portanto, esse item está incorreto.

Item III:

Esse item está correto, pois a lei que afirma qual a força entre os planetas é a lei de Newton da gravitação universal, que afirma que a força entre dois corpos de massa m_{1} e massa m_{2} é atrativa e proporcional ao produto entre as massas e ao inverso do quadrado de distância entre os corpos. As leis de Kepler são experimentais e não fazem referência à força entre os corpos.

O item correto é o item D.

[collapse]
Gabarito

Item D

[collapse]

Questão 18:

A figura abaixo representa esquematicamente um arranjo experimental para se estudar o comportamento de ondas, conhecido como experiência da dupla fenda ou experimento de Thomas Young (17731829). Na situação do arranjo, considere um feixe de luz monocromático e coerente, emitido por uma fonte luminosa de frequência constante. Inicialmente, o feixe luminoso passa pela fenda S1 do primeiro anteparo metálico (1), pelas fendas S2 e S3 do segundo anteparo metálico (2), até se projetar no anteparo (3). Considere que as aberturas das fendas são da mesma ordem de grandeza do comprimento de onda da luz incidente e muito menor que a distância entre as fendas e o anteparo.


A partir do exposto, julgue os itens a seguir em verdadeiro (V) ou falso (F):
I. Ao atravessar à fenda S1, a luz sofre difração;
II. Ao atravessar às fendas S2 e S3, cada uma delas comporta-se como uma fonte
puntiforme;
III. O comprimento de onda entre o primeiro e o segundo anteparos é igual ao
comprimento de onda que sai da fonte;
IV. Para que se observem franjas de interferência sobre o anteparo (3), faz-se
necessário que as ondas incidentes possuam fases diferentes, continuamente com
o tempo.
a) V, V, V. F;
b) V, V, F, F;
c) F, V, F, V;
d) F, F, V, V;
e) V, F, F, V.

Assunto Abordado

Ondas

[collapse]
Solução

Item I:

Pelo princípio de Huygens, cada ponto da frente de onda que atravessa a fenda S1 atuará como uma nova fonte. Isso é o que causará a difração nessa fenda.

Item II:

Ao analisar esse item é importante ressaltar que a fenda NÃO é um ponto, por isso, não atuará como uma verdadeira fonte puntiforme, sendo necessário considerar seu tamanho na busca de resultados quantitativos, contudo, seu tamanho é mínimo, portanto, quando se olha do ponto de vista humano, um comprimento de 1 \mu m é basicamente zero. Portanto, esse item pode ser considerado verdadeiro como uma aproximação.

Item III:

Os efeitos de difração não mudam o comprimento de onda, portanto, o item está correto.

Item IV:

A onda incidente na fenda 1 possui fase constante ao longo de uma frente de onda, portanto, esse item está incorreto.

O item correto é o item A.

[collapse]
Gabarito

Item A.

[collapse]

 

Questão 19:

Em um experimento realizado com bolas de massas diferentes (m_{A} = 2m_{B}), a bola A desloca-se sobre uma mesa com uma velocidade de 4,0 m/s, colidindo com a bola B, que se encontrava em repouso sobre a mesma mesa. Considerando que essa colisão é do tipo perfeitamente elástico, identifique os valores aproximados das velocidades das bolas A e B, após a colisão, em m/s:
a) 1,33 e 5,33;
b) 2,33 e 4,33;
c) 0,0 e 4,0;
d) 1,33 e 1,33;
e) 5,33 e 0,0

Assunto Abordado

Colisões

[collapse]
Solução

Sendo a colisão perfeitamente elástica, podemos afirmar duas coisas:

  • O coeficiente de restituição e será igual a 1.
  • A quantidade de movimento se conserva.

Definiremos como positivo o sentido inicial da velocidade da bolinha A. Definiremos também m_{B}=m

Conservando o momento:

2m.4,0 m/s=2mV_{A}+mV_{B}

2V_{A}+V_{B}=8,0 m/s

Além disso, podemos escrever que e=1

V_{B}-V_{A}=4,0 m/s

Subtraindo as duas equações, obtemos:

3V_{A}=4,0 m/s

V_{A}\approx 1,33 m/s

Consequentemente:

V_{B}\approx 5,33 m/s

Portanto temos que o item correto é o item A.

[collapse]
Gabarito

Item A

[collapse]

Questão 20:

Utilizando um acelerador de partículas, o professor de Física Moderna e Contemporânea mostrou aos seus alunos, como uma partícula alfa descreve uma trajetória curva de raio R, ao ser acelerada a partir do repouso por uma diferença de potencial igual a 1,0 kV ao adentrar em uma região cujo campo de indução magnética uniforme é igual a 0,2 T com direção perpendicular ao movimento da partícula. Indicando que a massa da partícula é igual a 6,68 . 10^{-27} kg e a carga 3,2 . 10^{-19} C, o valor do raio encontrado pelo professor foi, aproximadamente igual a:
a) 0,32 cm;
b) 3,2 m;
c) 32,0 cm;
d) 3,2 cm;
e) 32,0 m

Assunto Abordado

Eletricidade e Magnetismo

[collapse]
Solução

Pela segunda lei de Newton:

\frac{mv^{2}}{R}=qvB

R=\frac{mv}{qB}

E, pela conservação da energia:

\frac{mv^{2}}{2}=qV

v=\sqrt{\frac{2qV}{m}}

Substituindo:

R=\sqrt{\frac{2mV}{q}}\frac{1}{B}

R\approx 0,032 m

R\approx 3,2 cm

O Item correto é o item D.

[collapse]
Gabarito

Item D

[collapse]