Primeira fase (Nível Jr)

Escrito por Akira Ito, Gabriel Hemétrio, Matheus Felipe R. Borges, Lucas Tavares e Rafael Moreno

Você pode acessar a prova clicando aqui e o seu gabarito oficial clicando aqui.

Problema 1

Assunto Abordado

Dinâmica

[collapse]
Solução

A energia potencial de um corpo de massa m sob um campo gravitacional uniforme, g, depende da altura em relação ao solo da seguinte forma:

U=mgh

Desse modo, para encontrarmos a energia em função do tempo precisamos encontrar a altura do corpo em função do tempo. Nesse sentido, o corpo está em queda livre, ou seja, está sob ação apenas da gravidade.

Assim pela segunda lei de Newton,

F=ma

mg=ma

a=g

O corpo está sob aceleração constante. Com isso, pelas equações da cinemática:

h=h_0-\dfrac{gt^2}{2}

Perceba que o sinal negativo vem do fato da aceleração ser contraria ao sentido positivo da altura. Portanto a energia potencial em função do tempo é

U=mgh_0-\dfrac{mg^2t^2}{2}

Essa descreve uma parabola em função do tempo com concavidade para baixo, logo o item que melho representa o comportamento é o item c).

[collapse]
Gabarito

item c)

[collapse]

Problema 2

Assunto Abordado

Hidroestática

[collapse]
Solução

Para solucionarmos a questão utilizaremos o conceito de que corpos mais densos afundam. Nesse sentido, inicialmente, sem o sal, o ovo afunda na água (aconselho o leitor a fazer o experimento em casa), concluímos assim que o ovo é mais denso que a água pura. Desse modo, com a adição de sal variamos a densidade da água:

d=\dfrac{m_{agua}+m_{sal}}{V_{mistura}}

Ao adicionar o sal, aumentamos a massa da mistura e variamos levemente o volume, assim o termo do numerador cresce mais rapidamente que o denominador, acarretando um aumento da densidade da água.

 

Portanto, com o aumento de densidade da água, chega um momento que a densidade da água e do ovo se igualam, possibilitando o ovo de permanecer suspenso no meio da solução, já que não existe a tendência de ninguém afundar devido às densidades iguais. Além disso, aumentando mais a densidade, o ovo passa flutuar, pois a água passa a ficar mais densa.

 

Com isso, o que acontece depende da concentração de sal na água, pois a densidade da mistura pode ser menor, igual ou maior que a do ovo, assim a resposta correta é o item d).

[collapse]
Gabarito

 item d)

[collapse]

Problema 3

Assunto Abordado

Gravitação/astronomia

[collapse]
Solução

Para resolvemos o problema precisamos aplicar a 3 lei de Kepler, que para corpos orbitando o mesmo astro é valida a relação:

\dfrac{T^2}{R^3}=constante

Ou seja,

\dfrac{T^2}{(4R)^3}=\dfrac{(4\,h)^2}{(R)^3}

Desse modo,

\dfrac{T^2}{4^3}={(4\,h)^2}

{T^2}=4^3\cdot{(4\,h)^2}

\boxed{T=32\,h}

Portanto, o gabarito é item d).

[collapse]
Gabarito

item d)

[collapse]

Problema 4

Assunto Abordado

Cinemática

[collapse]
Solução

O movimento da pedra é uma queda livre, ou seja, está sob ação apenas da gravidade. Pela 2 lei de Newton:

F=ma

mg=ma

a=g

Como o campo gravitacional é constante a aceleração também é constante. Portanto, o gabarito é item c).

[collapse]
Gabarito

item c)

[collapse]

Problema 5

Assunto abordado

Cinemática

[collapse]
Solução

É importante entender que a aceleração resultante no objeto que será responsável pela redução do módulo de sua velocidade. Como o objeto está reduzindo o módulo de sua velocidade, a sua aceleração \vec{a} é contrária ao vetor velocidade \vec{v}. Então, uma vez que o objeto se move para leste, \vec{v} aponta para leste e \vec{a} para oeste.

[collapse]
Gabarito

Item c)

[collapse]

Problema 6

Assunto abordado

Cinemática

[collapse]

Solução

A distância é a medida total percorrida, independentemente da direção. Por exemplo, se uma pessoa caminhar 3 quilômetros em uma trilha sinuosa, a distância percorrida será de 3 quilômetros. Já o deslocamento é a mudança de posição em relação a um ponto de referência, levando em consideração a direção. Por exemplo, se uma pessoa caminhar 3 quilômetros para o norte e depois 2 quilômetros para o sul, o deslocamento será de 1 quilômetro na direção norte. Em resumo, a distância é uma medida escalar, enquanto o deslocamento é uma grandeza vetorial. Abaixo, segue uma representação para se entender melhor o conceito de distância e deslocamento.

Para um movimento retilíneo, o deslocamento pode ser tanto positivo quanto negativo, enquanto a distância é sempre positiva.

[collapse]
Gabarito

Item c)

[collapse]

Problema 7

Assunto abordado

Estática

[collapse]
Solução

No caso de equilíbrio estático, a força resultante é zero. De tal modo que, pela regra do polígono, podemos fazer a seguinte figura:

Pela lei dos senos, vemos que, então:

\dfrac{F_1}{\sin \theta_{23} }= \dfrac{F_2}{\sin \theta_{31} } = \dfrac{F_2}{\sin \theta_{12} }

[collapse]

Gabarito

Item a)

[collapse]

Problema 8

Assunto abordado

Estática/Hidrostática

[collapse]
Solução

Nesse caso, quando o sistema for colocado na água, surgirá uma força de empuxo vertical, com sentido contrário à gravidade, atuando em cada um dos corpos. Uma vez que eles tem o mesmo volume, a magnitude do empuxo que atua em ambos os corpos será igual. Como sabemos, quanto maior a distância ao centro de rotação, maior o torque, assim, a torque exercido pelo empuxo do corpo da direita será maior e, com isso, a balança se inclinará para a esquerda.

[collapse]
Gabarito

Item b)

[collapse]

Problema 9

Assunto abordado

Calorimetria

[collapse]
Solução

Nesse caso, o calor necessário para vaporizar a água é dado por:
\begin{equation*}
Q = mL
\end{equation*}
Substituindo os valores numéricos, obtemos:
\begin{equation*}
Q \approx 4500 \; \rm{J}
\end{equation*}

[collapse]

Gabarito

Item e)

[collapse]

Problema 10

Assunto abordado

Cinemática

[collapse]
Solução

Pelo enunciado, vemos que a curva da posição do objeto em função do tempo é uma parábola. Tendo isso em vista, o corpo está em um movimento uniformemente acelerado, em que:

x = \dfrac{at^2}{2}


de modo que, com isso, sua aceleração é constante.

[collapse]
Gabarito

Item d)

[collapse]

Problema 11

Assunto abordado

Calorimetria

[collapse]
Solução

Nesse caso, haverá trocas de calor entre a água e o chumbo visando o equilíbrio térmico. Como a água está inicialmente mais fria, ela irá receber calor, de modo que sua temperatura final será maior; enquanto que, o chumbo, como está inicialmente mais quente, cederá calor, de modo que sua temperatura final será menor.

[collapse]
Gabarito

Item d)

[collapse]

Problema 12

Assunto abordado

Análise dimensional

[collapse]
Solução

Para resolver essa questão, basta pensarmos com cuidado no significado da expressão kWh. Sabemos que um watt (W) corresponde a um consumo de 1 joule (J) a cada segundo (s). Isto é:

1 W = 1 J/s

O prefixo k usado antes de W representa o termo "kilo". Assim como um km equivale a 1000 m, 1 kW = 1000 W = 1000 J/s. Finalmente, sabemos que 1 h = 60 min = 60 \cdot 60 s = 3600 s. Podemos então escrever:

1 kWh = 1 kW \cdot 1 h = 1000 J/s \cdot 3600 s = 3600000 J

\boxed{1 kWh = 3,6 \cdot 10^{6} J}

Logo:

92 kWh = 92 \cdot 3,6 \cdot 10^{6} J = 331,2 \cdot 10^{6} J = 3,312 \cdot 10^{8} J

Mantendo consistente o número de algarismos significativos do problema (somente 2), obtemos a resposta final de

\boxed{92 kWh = 3,3 \cdot 10^{8} J}

Portanto Item d)

[collapse]
Gabarito

Item d)

[collapse]

Problema 13

Assunto abordado

Tempo de vida média, matemática

[collapse]
Solução

Dado que o tempo de vida média da amostra é de 12 min, a massa da substância cai pela metade a cada 12 min que se passam. Assim, começando com 24 g em t=0, em t = 12 min restarão 12 g da amostra. Em t = 24 min (passados ), teremos metade 6 g da substância. Finalmente, em t = 36 min, teremos somente mais 3 g da amostra. Podemos visualizar isso com o seguinte fluxograma:

24 g \xrightarrow[\div 2]{+12 min} 12 g \xrightarrow[\div 2]{+12 min} 6 g \xrightarrow[\div 2]{+12 min} 3 g

Portanto Item b).

[collapse]
Gabarito

Item b)

[collapse]

Problema 14

Assunto abordado

Dinâmica

[collapse]
Solução

Sabemos que o peso P de um corpo de massa m em uma região com aceleração gravitacional g é dada por:

P = mg

Assim, sabendo a massa e um peso de um certo corpo, podemos calcular a aceleração da gravidade local. Escolhendo o segundo ponto do gráfico de modo a facilitar as nossas contas, podemos ver que sua massa vale 50 kg e seu peso é de 300 N. Assim, o valor de g é:

\boxed{g = \dfrac{P}{m} = \dfrac{300 N}{50 kg} = 6 m/s^2}

Portanto Item c).

[collapse]
Gabarito

Item c)

[collapse]

Problema 15

Assunto abordado

Gravitação

[collapse]
Solução

Nós sabemos que na gravitação, a massa dos satélites estudados não é relevante, pois sempre é "cancelada" ao decorrer das operações matemáticas. Como exemplo disto, basta lembrar que quando um corpo tem massa m e está numa região com aceleração gravitacional g, podemos escrever que:

P = mg = F_{r} = ma

a = g

Logo, a aceleração do corpo (que vai gerar as distâncias mínima, máxima e a velocidade orbital) não tem qualquer relação com a massa do satélite, de modo que essa é a única quantidade que não poderemos calcular.

Portanto Item a)

[collapse]
Gabarito

Item a)

[collapse]

Problema 16

Assunto abordado

Estimativas

[collapse]
Solução

Umas vez que P = mg, corpos que tenham peso na ordem de 1 N possuem uma massa de

m = \dfrac{P}{g} = \dfrac{1 N}{10 m/s^2} = 0,1 \dfrac{N}{m/s^2} = 0,1 kg

m = 0,1 kg = 100 g

Vamos agora estimar a ordem de grandeza dos diferentes objetos listados:

Clipe de papel - 1 g

Moeda - 10 g

Litro de água - 1 kg

Bola de tênis - 100 g

Estudante de física - 100 kg

De acordo com nossas estimativas, a bola de tênis é o objeto listado cujo peso mais se aproxima do valor de 1 N. Portanto Item d).

[collapse]
Gabarito

Item d)

[collapse]

Problema 17

Assunto abordado

Estimativa e ordem de grandeza

[collapse]
Solução

O problema pede para encontrar o valor mais próximo para a altura de uma pilha com 8 bilhões de celulares. É certamente uma pergunta com pouca aplicação prática, mas que tem a intenção de avaliar a capacidade do aluno de fazer estimativas, criar um modelo para alguma situação e aplicar os seus conhecimentos sobre o mundo para encontrar algum valor numérico.

Não existe apenas uma maneira certa de fazer estimativas, afinal o nome já diz, então a equipe do NOIC apenas está oferecendo um dos vários possíveis raciocínios. O celular de quem está escrevendo essa solução possui uma espessura de aproximadamente0,5\,cm. Isso pode variar dependendo do modelo, mas definitivamente o valor ficará em torno de 0,5\,cm, pois é muito difícil alguém possuir um celular com 0,05\,cm ou 5\,cm.

Se empilhássemos todos juntos, teríamos uma torre de altura:

 h= N_{celulares}\cdot L_{celular}

 h = (8\cdot 10^9) \cdot 0,5

 h=4\cdot 10^{9} \,cm

Convertendo para metros:

 \boxed{h=4\cdot 10^7\,m }

 \boxed{h\approx 10^7\,m }

Portanto Item b).

[collapse]
Gabarito

Item b)

[collapse]

Problema 18

Assunto abordado

Unidades de medida

[collapse]
Solução

Segue a lista com as grandezas, unidade no SI e classificação (vetorial ou escalar):

a) Peso - Newton (N) - Vetorial

b) Massa - Quilograma (kg) - Escalar

c) Peso - Newton (N) - Vetorial

d) Energia - Joule (J) - Escalar

e) Pressão - Pascal (Pa) - Escalar

Lembrando que as grandezas escalares necessitam apenas do valor numérico (módulo) para serem compreendidas (massa, temperatura, distância, área, volume, tempo). Enquanto isso as grandezas vetoriais necessitam do módulo, direção e sentido para serem compreendidas. Tome muito cuidado pois, embora seja comum as pessoas falarem "Eu peso X quilos", peso é uma força e por isso deve ser medida em Newtons. O mais apropriado seria dizer "Eu peso Y Newtons" ou "Minha massa é X quilos".

Portanto Item c).

[collapse]
Gabarito

Item c)

[collapse]

Problema 19

Assunto abordado

Calorimetria, mudanças de fase

[collapse]
Solução

Inicialmente há uma porção de água e gelo misturados no recipiente. Nessa etapa, o calor recebido é fornecido para o gelo se transformar em água líquida (conhecido como calor latente, responsável pela mudança de fase). Um fato importante é que substâncias simples (como o gelo, por exemplo) mudam de fase à temperatura constante, então o primeiro trecho do gráfico deve ser uma linha horizontal, pois não há variação de temperatura.

Quando todo o gelo derrete, o sistema passa a ser apenas água. Agora a situação é muito similar a uma panela esquentando água no fogo. A água recebe o calor fornecido para o sistema e aumenta sua temperatura gradualmente (conhecido como calor sensível, responsável pela mudança de temperatura). Essa mudança de temperatura é proporcional à temperatura de maneira linear (para 1 grama de água, 1 caloria aumenta a temperatura em 1 grau, 2 calorias aumentam 2 graus, 3 calorias 3 graus e assim por diante), então a segunda parte do gráfico deve ser uma reta crescente.

No fim, quando a água atingir o ponto de ebulição (quando a água começa a ferver) temos novamente uma situação de mudança de fase, mas agora do estado líquido para o vapor. Como já foi comentado, o gráfico será uma linha horizontal.

Portanto Item c).

[collapse]
Gabarito

Item c)

[collapse]

Problema 20

Assunto abordado

Calorimetria

[collapse]
Solução

O problema trata sobre trocas de calor e pede para encontrar a temperatura de equilíbrio de um sistema. Infelizmente o enunciado não forneceu uma das temperaturas necessárias para resolver o exercício, mas como um problema muito similar foi cobrado em outros níveis, a equipe do NOIC vai utilizar os valores do outro nível para apresentar o raciocínio, que são: 5\,kg de água à temperatura de 10^\circ C e 10\,kg de água à temperatura de 40^\circ C.

Para resolver esse problema, basta usar a conservação de energia, ou seja, o calor doado por um corpo é igual ao calor recebido:

 Q_1+Q_2=0

O calor trocado é sensível, ou seja, varia de temperatura conforme a clássica expressão Q=mc\Delta T, em que m é a massa do corpo, c é o calor específico e \Delta T é a variação de temperatura do corpo.

 m_1 c \Delta T_1 + m_2 c \Delta T_2=0

 5(T-10)+10(T-40)=0

Resolvendo a equação, obtemos:

 \boxed{T=30^\circ C}

Mesmo usando os valores que não foram fornecidos, não é possível escolher um item pois  T=30^\circ C se enquadra no Item B e no Item D. Portanto a questão deve ser Anulada.

[collapse]
Gabarito

Anulada

[collapse]