Escrito por Ualype Uchôa
Nosso estudo da Eletrostática terminou na aula passada; hoje, iniciaremos o estudo dos circuitos elétricos (Eletrodinâmica), introduzindo algumas ideias e conceitos de corrente elétrica e o estudo teórico de componentes chamados de resistores; aplicaremos também a noção de corrente elétrica e densidade de corrente elétrica, e serão apresentadas as famosas leis de Ohm.
Introdução
Desde o começo do curso, estávamos lidando com uma área da Eletricidade chamada de Eletrostática. Como já vimos, o estudo da eletrostática se refere ao estudo de cargas elétricas em repouso, significado que está implícito no nome. Quando isso não acontece, e as cargas elétricas em estudo estão se movendo, há a ocorrência de correntes elétricas, e surge um ramo chamado Eletrodinâmica que se responsabiliza por estudar os fenômenos relacionados às cargas elétricas em movimento. Iremos colocar na prática os conceitos estudados na Eletrostática! Primeiramente, vamos definir o que é uma corrente elétrica.
Corrente Elétrica
Definição
A corrente elétrica corresponde a um tipo de movimento de cargas. Mais formalmente, nos referimos à corrente elétrica como um movimento ordenado de portadores de carga, com direção e sentido. Estes portadores podem ser partículas físicas como prótons ou elétrons (mais comum), mas isso não realmente irá nos importar. Sendo assim, vamos definir a corrente elétrica média da seguinte forma:
,
ou seja, se em uma determinada região do espaço, digamos, uma seção de um fio, passa uma certa carga durante um intervalo de tempo , a corrente média nesse intervalo é a carga que passa sobre o tempo medido. Dessa forma, a corrente é uma grandeza escalar e a sua unidade no SI será o ampere (), em homagem ao físico de mesmo nome, com
.
com denotando o coulomb. E, do mesmo modo, a corrente elétrica instantânea será a derivada da carga com relação ao tempo:
.
É óbvio que, para uma taxa constante de carga por unidade de tempo, ambas as definições coincidem, e a corrente será constante. Dessas definições, decorre que podemos encontrar a carga total que atravessa uma região durante um certo tempo por meio da área embaixo do gráfico versus , ou integrando a expressão acima.
É possível dividir as correntes em duas categorias principais:
Correntes contínuas ou diretas (DC - direct current): Uma corrente se diz contínua se o seu sentido (seu valor algébrico - negativo ou positivo) se mantém constante durante o tempo. Perceba que que sua intensidade (valor absoluto) pode variar com o passar do tempo.
Correntes alternantes (AC - alternating current): Uma corrente se diz alternada se o seu sentido varia com o passar do tempo, geralmente de forma periódica, por exemplo, conforme uma função senoidal. É este tipo de corrente que circula pela rede elétrica que alimenta nossas casas!
Estudaremos majoritariamente o primeiro tipo na nossa análise de circuitos elétricos.
Uma corrente pode estar associada tanto à aplicação de um campo elétrico às cargas como por forças mecânicas exercidas, por exemplo, em um condutor; no último caso, teremos as chamadas correntes de convecção, nas quais matéria e carga movem-se em conjunto. Veja o exemplo a seguir:
Exemplo 1:
Uma esfera condutora de raio possui carga e gira em torno de um fio isolante com velocidade angular . Determine a corrente média representada por essa carga em rotação.
Figura 1: Esfera carregada girando em torno do seu eixo
Solução:
Vamos utilizar a definição de corrente média. Durante uma rotação completa de duração , a carga total que passa é a carga da esfera. Sendo assim:
.
Sentido da corrente
O sentido da corrente, é, por convenção, o sentido oposto ao do movimento dos portadores de cargas negativas. Por exemplo, se os elétrons livres - que possuem carga negativa - em um fio movem-se para a direita, o sentido da corrente será para a esquerda. Essa convenção pode lhe parecer estranha e até mesmo inconveniente; no entanto, ela foi criada antes mesmo de os físicos perceberem que a corrente em materiais condutores metálicos era devido ao movimento dos elétrons!
Densidade de corrente
Uma quantidade também de suma importância será a densidade de corrente. Tal grandeza nos dará informação sobre o sentido e direção de movimento das cargas - logo, ela será vetorial - além de nos permitir relacionar o campo elétrico aplicado aos portadores de carga com a corrente gerada pelo movimento destes. Se uma corrente infinitesimal atravessa uma pequena região de secção reta no sentido mostrado pelas linhas em rosa na figura abaixo, o vetor densidade de corrente será:
Figura 2: Superfície sendo atravessada por uma densidade de corrente .
Integrando-se sobre a superfície de interesse, somamos todas as contribuições, e então a corrente total é dada por:
.
Para o caso em que é constante, obtemos
,
onde será a secção reta total do condutor percorrido por essa corrente. Veja, então, que podemos fazer uma analogia da corrente com o fluxo elétrico, que possui a mesma forma matemática; a corrente atua como o fluxo da densidade da corrente.
Continuidade da corrente
O que acontece com uma corrente em um fio quando o mesmo apresenta ramificações? Vamos considerar a seguinte situação: um fio é atravessado por uma corrente e se ramifica em duas seções. Então, passa a fluir uma corrente num ramo e em outro:
Figura 3: Corrente se dividindo em e .
Como relacionar essas correntes? Tendo em vista que não pode haver acúmulo de carga na junção, (o "nó"), é necessária a continuidade, também chamada de "conservação" da corrente:
Ou, generalizando:
.
Isto é, a soma das correntes "entrando" é igual à soma das correntes "saindo".
As Leis de Ohm
Primeira Lei de Ohm
Considere um condutor, cuja D.D.P aplicada entre suas extremidades é . Se o condutor estiver a uma temperatura constante, quando a corrente o atravessa, a queda de potencial é proporcional à intensidade da corrente :
,
sendo uma característica do condutor chamada de resistência elétrica. Sua unidade no SI é o ohm (), sendo . Aos condutores que obedecem essa relação linear entre a D.D.P. e a corrente, damos o nome de resistores ôhmicos. Em outras palavras, a curva característica versus para um resistor ôhmico é uma reta:
Figura 4: Curva característica versus de um resistor ôhmico.
E o coeficiente angular é a resistência do material *.
OBS* : Essa relação pode ser expandida para resistores não-ôhmicos (cuja relação entre e não é linear), conforme , o que significa que, em um determinado ponto do gráfico, podemos traçar uma reta tangente à curva x , cujo coeficiente angular - a derivada - corresponde à chamada resistência diferencial do componente, e é variável.
Segunda Lei de Ohm
Considere um condutor cilíndrico (neste caso, um resistor) de secção reta , sobre o qual se estabelece uma diferença de potencial entre suas extremidades (por exemplo, através de um gerador, como veremos posteriormente).
Figura 4: Esquema de um resistor.
Com isso, flui através dele uma corrente (no sentido indicado pelo vetor densidade de corrente ) e haverá um campo elétrico uniforme (podemos provar isso, utilizando a eq. de Laplace), que deverá obedecer:
,
como bem sabemos. Outra forma de enunciar a primeira lei de Ohm, é dizer que, em materiais ôhmicos, o vetor densidade de corrente é proporcional ao campo elétrico:
.
Esta forma não será tão útil na resolução prática de circuitos elétricos. A constante de proporcionalidade é chamada de condutividade elétrica, e sua unidade é o . Usando a definição de e que escrevemos que
,
,
com , o inverso da condutividade, levando o nome de resistividade elétrica. Essa relação entre as propriedades geométricas (comprimento, secção reta) de um resistor, sua resistividade e a resistência é chamada de segunda lei de Ohm. Perceba que, mantendo constantes as dimensões do nosso componente, a resistência é proporcional à resistividade (daí o nome), e inversamente proporcional à condutividade. Por isso, bons condutores possuem uma resistência muito baixa.
Você deve ter percebido que foi necessária a condição de temperatura constante quando começamos a falar de primeira Lei de Ohm. Isso ocorre pois a resistividade varia com a temperatura do condutor, de forma aproximadamente linear com a temperatura (para temperaturas até cerca de ):
.
Muito semelhante com a dilatação térmica de materiais! Mas, aqui, é o coeficiente de temperatura, e não deve ser confundido com o coeficiente de dilatação. Esse fenômeno ocorre pois, com o aumento de temperatura, os átomos e moléculas no caminho dos elétrons ficam mais agitados, e oferecem uma maior resistência ao movimento destes. Podemos explorar um modelo como esse para tentar explicar as leis de Ohm de uma forma mais microscópica; vejamos o próximo exemplo.
Exemplo 2:
Um modelo interessante para explicar as leis de Ohm é considerar que as cargas (em geral, elétrons livres) dentro de um resistor movimentam-se com uma velocidade aproximadamente constante. Vamos considerar o seguinte: um elétron de carga , dentro do resistor, está sujeito à uma força de resistência devido às colisões com outros elétrons e a presença de outros átomos e moléculas, do tipo (sendo uma constante) com sentido oposto ao de sua velocidade. Sendo a densidade volumétrica de elétrons no condutor, a secção reta do condutor e seu comprimento, mostre que a D.D.P. entre os terminais é proporcional à corrente que flui dentro dele.
Solução:
Como o elétron movimenta-se com velocidade constante, é necessário que a força resultante seja zero. Isto é:
.
Podemos encontrar a velocidade média dos elétrons como função da corrente média que atravessa o resistor. Num tempo , a carga (em módulo) atravessando o volume no resistor é . Assim:
,
.
Considerando o campo elétrico homogêneo, a D.D.P será . Isolando e e substituindo na primeira equação, por fim obtemos a desejada relação:
,
.
Ou seja, com um modelo simples conseguimos obter a relação linear entre a D.D.P. e a corrente que passa por uma resistência ôhmica.
Exemplo 3:
Dois condutores cilíndricos de raio e de resistividades e , respectivamente, são conectados em série, e percorridos por uma corrente (com sentido do condutor para o ). Qual é a carga acumulada na junção entre eles? A permissividade do meio é .
Solução:
Primeiramente, devemos entender o porquê de haver carga acumulada. Se escolhermos uma "pillbox" gaussiana na junção entre os condutores. A Lei de Gauss nos diz que:
Como em ambas as faces da pillbox haverá um campo elétrico diferente (devido à resistividade distinta dos condutores), o fluxo resultante nela será diferente de zero. Logo, irá haver acúmulo de carga na fronteira. Podemos calcular os campos e no interior dos condutores utilizando a primeira lei de Ohm:
.
Mas . Assim:
e .
O fluxo elétrico na pillbox será dado por:
,
haja vista que "sai" de uma face e "entra" na outra. Por fim, substituindo na lei de Gauss, encontramos a carga que se acumula na junção:
.
Potência Dissipada: Efeito Joule
Vamos investigar a potência necessária pra manter uma corrente elétrica circulando. A definição de potência é:
A energia será devido às cargas que passam por uma região onde há diferença de potencial (mais à frente, veremos que ela é causada por componentes como geradores ou baterias). Sendo ela , a energia que deve ser fornecida, num tempo é . Logo:
.
Num resistor ôhmico, , então:
.
Essa potência também corresponde exatamente à potência dissipada no resistor por Efeito Joule, que pode ser reaproveitada, por exemplo, para aquecer um certo objeto. O Efeito Joule estabelece que toda a potência elétrica fornecida ao condutor ôhmico é dissipada na forma de calor. Uma aplicação prática disso é a da lâmpada incandescente, presente em muitas de nossas casas. Ela brilha devido à energia elétrica que lhe é fornecida, e, ao fazer isso, dissipa energia na forma de calor, e por isso esquenta.