Aula Zero -- Eletrólitos e Cálculo do pH de Soluções de Ácidos e Bases Fortes

Aula de Ivna Gomes

Eletrólitos e não eletrólitos

Um eletrólito é qualquer substância que, dissociada ou ionizada, libera cátions e ânions pela adição de solvente ou por aquecimento. A solução de um eletrólito é condutora de eletricidade e é chamada de solução eletrolítica.

Uma substância que não libera íons nessas condições e, portanto, não se torna condutora de eletricidade, é chamada de um não eletrólito. Uma solução de uma substância desse tipo é chamada de não eletrolítica.

As soluções de ácidos e bases, nossos objetos de estudo nesta parte do curso, são eletrolíticas.  

aula 1 imagem 3

Conceito de ácidos e bases de Bronsted-Lowry

Antes de começar os estudos sobre o pH das soluções, é importante compreender os conceitos de ácido e base que utilizaremos no decorrer deste curso. Entre diversas teorias ácido-base, a mais relevante nos estudos de equilíbrios iônicos é a teoria de Bronsted-Lowry. Segundo ela:

  • Um ácido é uma espécie que contém um átomo de hidrogênio ácido que pode ser transferido na forma de H+ a uma base. Ex.: HCl, HNO_{3}, CH_{3}COOH
  • Uma base é uma espécie que contém um par de elétrons capazes de aceitar um próton H^+ de um ácido. Ex.: NH_{3}, N_{2}H_{4}, OH^{-}

É importante também saber que os ácidos e as bases podem ser classificados de acordo com sua força.

  • Ácidos fortes são aqueles completamente desprotonados em solução; bases fortes são aquelas completamente protonadas em solução.
  • Os ácidos fracos não estão completamente desprotonados; bases fracas não estão completamente protonadas.

Produto iônico da água

A água é um ácido, pois, na presença de uma base, pode liberar seu íon H^{+}, e também uma base, pois na presença de um ácido, um dos pares não ligantes do oxigênio pode capturar o íon H^{+} liberado por aquele. A água tem um comportamento que chamamos de ANFIPRÓTICO. Ela se autoioniza como segue:

2H_2O \rightarrow H_3O^{+}+ OH^{-}

aula 1 imagem 1

Esse processo é denomidado AUTOPROTÓLISE, e ocorre com outros solventes além da água.

Esse equilíbrio tem uma constante dada por: K_w=[ H_3O^{+}][OH^{-}] e seu valor a 25°C é 10^{-14}. Este é o produto iônico da água e K_{w} é sua constante de autoionização.

Em solução aquosa, um ácido de Bronsted-Lowry HA se comporta como segue:

HA+H_2O \rightarrow A^{-}+ H_3O^{+}

Em solução aquosa, uma base de Bronsted-Lowry B se comporta de acordo com:

B+H_2O \rightarrow BH^{+} + OH^{-}

No caso das bases de Arrhenius, como o KOH, NaOH ou Ba(OH)_2, a base de Bronsted-Lowry que reage como o exemplo genérico acima é o OH^- liberado por elas estequiometricamente.

 

O conceito de pH

O conceito de pH foi criado para facilitar a escrita das concentrações de H_3O^{+} nas soluções aquosas, e sua definição é:

pH=-log[H_3O^{+}]

Na água pura, temos que [H_3O^{+}]=[ OH^{-}]. Logo,

[H_3O^{+}]^2=10^{-14}

[H_3O^{+}]=10^{-7}

Portanto, o pH da água pura a 25°C é 7. Temos que:

  • Em uma solução neutra, o pH = 7.
  • O pH de uma solução aquosa básica é maior que 7 (pois a concentração de é menor que 10^{-7}).
  • O pH de uma solução aquosa ácida é menor que 7 (pois a concentração de é maior que 10^{-7}).

 

aula 1 imagem 2

 

Cálculo de pH em soluções aquosas de ácidos fortes

Exemplo 1: Cálculo do pH de uma solução de HCl com concentração 0,01 mol/L.

Sendo um ácido forte, o HCl se ioniza totalmente em solução. Logo,

[H_3O^{+}]=[HCl]=0.01 mol/L

pH=- \log(0.01)

pH=2

Isso confere com nossas previsões para soluções ácidas.

Exemplo 2: Cálculo do pH de uma solução de KOH com concentração 0,4 mol/L.

Cada unidade de KOH fornece um ânion OH^{-}.

Logo,

[OH^{-}]=[KOH]=0,4 mol/L

Do produto iônico da água, temos

[H_3O^{+}]= \frac{K_{w}}{[ OH^{-}]}=\frac{10^{-14}}{0.4}=2.5 \cdot 10^{-13} mol/L

pH=-\log(2.5x10^{-13})

pH=12.60

Isso confere com nossas previsões para soluções básicas.

 

O pOH das soluções

Muitas expressões quantitativas de concentrações são simplificadas quando usamos os logaritmos. Generalizando, para uma espécie X, temos:

pX=-\log[X]

Assim, o pOH é definido por:

pOH=-\log[OH^{-}]

Por exemplo, o pOH da água pura é:

[OH^{-}]=[ H_3O^{+}]=10^{-7}

pOH=-\log(10^{-7})

pOH=7

É importante perceber que o pOH e o pH de soluções aquosas estão intimamente relacionados.

Temos:

[H_3O^{+}]x[OH^{-}]=K_{w}

\log[H_3O^{+}] + \log[OH^{-}] = \log(K_{w})

-\log[H_3O^{+}] - \log[OH^{-}] = - log(K_{w})

pH + pOH = pK_{w}

A 25°C, temos:

pH + pOH = 14